
Python Programming:
An Introduction to Computer Science

John M. Zelle, Ph.D.

Version 1.0rc2
Fall 2002

Copyright c
�

2002 by John M. Zelle

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior
written permission of the author.

This document was prepared with LATEX 2ε and reproduced by Wartburg College Printing Services.

Contents

1 Computers and Programs 1
1.1 The Universal Machine . 1
1.2 Program Power . 2
1.3 What is Computer Science? . 2
1.4 Hardware Basics . 3
1.5 Programming Languages . 4
1.6 The Magic of Python . 5
1.7 Inside a Python Program . 8
1.8 Chaos and Computers . 10
1.9 Exercises . 11

2 Writing Simple Programs 13
2.1 The Software Development Process . 13
2.2 Example Program: Temperature Converter . 13
2.3 Elements of Programs . 15

2.3.1 Names . 15
2.3.2 Expressions . 15

2.4 Output Statements . 16
2.5 Assignment Statements . 17

2.5.1 Simple Assignment . 17
2.5.2 Assigning Input . 18
2.5.3 Simultaneous Assignment . 19

2.6 Definite Loops . 20
2.7 Example Program: Future Value . 22
2.8 Exercises . 24

3 Computing with Numbers 25
3.1 Numeric Data Types . 25
3.2 Using the Math Library . 27
3.3 Accumulating Results: Factorial . 28
3.4 The Limits of Int . 31
3.5 Handling Large Numbers: Long Ints . 32
3.6 Type Conversions . 34
3.7 Exercises . 35

4 Computing with Strings 39
4.1 The String Data Type . 39
4.2 Simple String Processing . 41
4.3 Strings and Secret Codes . 43

4.3.1 String Representation . 43
4.3.2 Programming an Encoder . 44
4.3.3 Programming a Decoder . 45
4.3.4 Other String Operations . 48

i

ii CONTENTS

4.3.5 From Encoding to Encryption . 48
4.4 Output as String Manipulation . 49

4.4.1 Converting Numbers to Strings . 49
4.4.2 String Formatting . 50
4.4.3 Better Change Counter . 51

4.5 File Processing . 52
4.5.1 Multi-Line Strings . 52
4.5.2 File Processing . 53
4.5.3 Example Program: Batch Usernames . 55
4.5.4 Coming Attraction: Objects . 56

4.6 Exercises . 57

5 Objects and Graphics 61
5.1 The Object of Objects . 61
5.2 Graphics Programming . 62
5.3 Using Graphical Objects . 64
5.4 Graphing Future Value . 68
5.5 Choosing Coordinates . 73
5.6 Interactive Graphics . 75

5.6.1 Getting Mouse Clicks . 75
5.6.2 Handling Textual Input . 76

5.7 Graphics Module Reference . 79
5.7.1 GraphWin Objects . 79
5.7.2 Graphics Objects . 79
5.7.3 Entry Objects . 81
5.7.4 Displaying Images . 81
5.7.5 Generating Colors . 81

5.8 Exercises . 82

6 Defining Functions 85
6.1 The Function of Functions . 85
6.2 Functions, Informally . 86
6.3 Future Value with a Function . 89
6.4 Functions and Parameters: The Gory Details . 90
6.5 Functions that Return Values . 93
6.6 Functions and Program Structure . 95
6.7 Exercises . 97

7 Control Structures, Part 1 101
7.1 Simple Decisions . 101

7.1.1 Example: Temperature Warnings . 101
7.1.2 Forming Simple Conditions . 103
7.1.3 Example: Conditional Program Execution . 104

7.2 Two-Way Decisions . 105
7.3 Multi-Way Decisions . 107
7.4 Exception Handling . 109
7.5 Study in Design: Max of Three . 112

7.5.1 Strategy 1: Compare Each to All . 112
7.5.2 Strategy 2: Decision Tree . 113
7.5.3 Strategy 3: Sequential Processing . 114
7.5.4 Strategy 4: Use Python . 116
7.5.5 Some Lessons . 116

7.6 Exercises . 116

CONTENTS iii

8 Control Structures, Part 2 119
8.1 For Loops: A Quick Review . 119
8.2 Indefinite Loops . 120
8.3 Common Loop Patterns . 121

8.3.1 Interactive Loops . 121
8.3.2 Sentinel Loops . 123
8.3.3 File Loops . 125
8.3.4 Nested Loops . 126

8.4 Computing with Booleans . 127
8.4.1 Boolean Operators . 127
8.4.2 Boolean Algebra . 129

8.5 Other Common Structures . 130
8.5.1 Post-Test Loop . 130
8.5.2 Loop and a Half . 132
8.5.3 Boolean Expressions as Decisions . 132

8.6 Exercises . 134

9 Simulation and Design 137
9.1 Simulating Racquetball . 137

9.1.1 A Simulation Problem . 137
9.1.2 Program Specification . 138

9.2 Random Numbers . 138
9.3 Top-Down Design . 140

9.3.1 Top-Level Design . 140
9.3.2 Separation of Concerns . 141
9.3.3 Second-Level Design . 142
9.3.4 Designing simNGames . 143
9.3.5 Third-Level Design . 144
9.3.6 Finishing Up . 146
9.3.7 Summary of the Design Process . 148

9.4 Bottom-Up Implementation . 148
9.4.1 Unit Testing . 148
9.4.2 Simulation Results . 149

9.5 Other Design Techniques . 150
9.5.1 Prototyping and Spiral Development . 150
9.5.2 The Art of Design . 151

9.6 Exercises . 152

10 Defining Classes 155
10.1 Quick Review of Objects . 155
10.2 Example Program: Cannonball . 156

10.2.1 Program Specification . 156
10.2.2 Designing the Program . 156
10.2.3 Modularizing the Program . 159

10.3 Defining New Classes . 159
10.3.1 Example: Multi-Sided Dice . 160
10.3.2 Example: The Projectile Class . 162

10.4 Objects and Encapsulation . 164
10.4.1 Encapsulating Useful Abstractions . 164
10.4.2 Putting Classes in Modules . 164

10.5 Widget Objects . 166
10.5.1 Example Program: Dice Roller . 166
10.5.2 Building Buttons . 166
10.5.3 Building Dice . 169

iv CONTENTS

10.5.4 The Main Program . 172
10.6 Exercises . 173

11 Data Collections 177
11.1 Example Problem: Simple Statistics . 177
11.2 Applying Lists . 178

11.2.1 Lists are Sequences . 178
11.2.2 Lists vs. Strings . 179
11.2.3 List Operations . 180

11.3 Statistics with Lists . 181
11.4 Combining Lists and Classes . 184
11.5 Case Study: Python Calculator . 188

11.5.1 A Calculator as an Object . 188
11.5.2 Constructing the Interface . 188
11.5.3 Processing Buttons . 190

11.6 Non-Sequential Collections . 193
11.6.1 Dictionary Basics . 193
11.6.2 Dictionary Operations . 194
11.6.3 Example Program: Word Frequency . 194

11.7 Exercises . 198

12 Object-Oriented Design 201
12.1 The Process of OOD . 201
12.2 Case Study: Racquetball Simulation . 202

12.2.1 Candidate Objects and Methods . 203
12.2.2 Implementing SimStats . 203
12.2.3 Implementing RBallGame . 205
12.2.4 Implementing Player . 207
12.2.5 The Complete Program . 207

12.3 Case Study: Dice Poker . 210
12.3.1 Program Specification . 210
12.3.2 Identifying Candidate Objects . 210
12.3.3 Implementing the Model . 211
12.3.4 A Text-Based UI . 214
12.3.5 Developing a GUI . 216

12.4 OO Concepts . 221
12.4.1 Encapsulation . 221
12.4.2 Polymorphism . 222
12.4.3 Inheritance . 222

12.5 Exercises . 223

13 Algorithm Analysis and Design 225
13.1 Searching . 225

13.1.1 A Simple Searching Problem . 225
13.1.2 Strategy 1: Linear Search . 226
13.1.3 Strategy 2: Binary Search . 226
13.1.4 Comparing Algorithms . 227

13.2 Recursive Problem-Solving . 228
13.2.1 Recursive Definitions . 229
13.2.2 Recursive Functions . 230
13.2.3 Recursive Search . 230

13.3 Sorting Algorithms . 231
13.3.1 Naive Sorting: Selection Sort . 231
13.3.2 Divide and Conquer: Merge Sort . 232

CONTENTS v

13.3.3 Comparing Sorts . 234
13.4 Hard Problems . 235

13.4.1 Towers of Hanoi . 236
13.4.2 The Halting Problem . 239
13.4.3 Conclusion . 241

vi CONTENTS

Chapter 1

Computers and Programs

Almost everyone has used a computer at one time or another. Perhaps you have played computer games or
used a computer to write a paper or balance your checkbook. Computers are used to predict the weather,
design airplanes, make movies, run businesses, perform financial transactions, and control factories.

Have you ever stopped to wonder what exactly a computer is? How can one device perform so many
different tasks? These basic questions are the starting point for learning about computers and computer
programming.

1.1 The Universal Machine

A modern computer might be defined as “a machine that stores and manipulates information under the con-
trol of a changeable program.” There are two key elements to this definition. The first is that computers
are devices for manipulating information. This means that we can put information into a computer, and it
can transform the information into new, useful forms, and then output or display the information for our
interpretation.

Computers are not the only machines that manipulate information. When you use a simple calculator to
add up a column of numbers, you are entering information (the numbers) and the calculator is processing the
information to compute a running sum which is then displayed. Another simple example is a gas pump. As
you fill your tank, the pump uses certain inputs: the current price of gas per gallon and signals from a sensor
that reads the rate of gas flowing into your car. The pump transforms this input into information about how
much gas you took and how much money you owe.

We would not consider either the calculator or the gas pump as full-fledged computers, although modern
versions of these devices may actually contain embedded computers. They are different from computers in
that they are built to perform a single, specific task. This is where the second part of our definition comes into
the picture: computers operate under the control of a changeable program. What exactly does this mean?

A computer program is a detailed, step-by-step set of instructions telling a computer exactly what to do.
If we change the program, then the computer performs a different sequence of actions, and hence, performs
a different task. It is this flexibility that allows your PC to be at one moment a word processor, at the next
moment a financial planner, and later on, an arcade game. The machine stays the same, but the program
controlling the machine changes.

Every computer is just a machine for executing (carrying out) programs. There are many different kinds
of computers. You might be familiar with Macintoshes and PCs, but there are literally thousands of other
kinds of computers both real and theoretical. One of the remarkable discoveries of computer science is
the realization that all of these different computers have the same power; with suitable programming, each
computer can basically do all the things that any other computer can do. In this sense, the PC that you might
have sitting on your desk is really a universal machine. It can do anything you want it to, provided you can
describe the task to be accomplished in sufficient detail. Now that’s a powerful machine!

1

2 CHAPTER 1. COMPUTERS AND PROGRAMS

1.2 Program Power

You have already learned an important lesson of computing: Software (programs) rules the hardware (the
physical machine). It is the software that determines what any computer can do. Without programs, comput-
ers would just be expensive paperweights. The process of creating software is called programming, and that
is the main focus of this book.

Computer programming is a challenging activity. Good programming requires an ability to see the big
picture while paying attention to minute detail. Not everyone has the talent to become a first-class program-
mer, just as not everyone has the skills to be a professional athlete. However, virtually anyone can learn how
to program computers. With some patience and effort on your part, this book will help you to become a
programmer.

There are lots of good reasons to learn programming. Programming is a fundamental part of computer
science and is, therefore, important to anyone interested in becoming a computer professional. But others can
also benefit from the experience. Computers have become a commonplace tool in our society. Understanding
the strengths and limitations of this tool requires an understanding of programming. Non-programmers often
feel they are slaves of their computers. Programmers, however, are truly the masters. If you want to become
a more intelligent user of computers, then this book is for you.

Programming can also be loads of fun. It is an intellectually engaging activity that allows people to
express themselves through useful and sometimes remarkably beautiful creations. Believe it or not, many
people actually write computer programs as a hobby. Programming also develops valuable problem-solving
skills, especially the ability to analyze complex systems by reducing them to interactions of understandable
subsystems.

As you probably know, programmers are in great demand. More than a few liberal arts majors have turned
a couple computer programming classes into a lucrative career option. Computers are so commonplace in the
business world today that the ability to understand and program computers might just give you the edge over
your competition, regardless of your occupation.

1.3 What is Computer Science?

You might be surprised to learn that computer science is not the study of computers. A famous computer
scientist named Edsgar Dijkstra once quipped that computers are to computer science what telescopes are to
astronomy. The computer is an important tool in computer science, but it is not itself the object of study.
Since a computer can carry out any process that we can describe, the real question is What processes can we
describe? Put another way, the fundamental question of computer science is simply What can be computed?
Computer scientists use numerous techniques of investigation to answer this question. The three main ones
are design, analysis, and experimentation.

One way to demonstrate that a particular problem can be solved is to actually design a solution. That is,
we develop a step-by-step process for achieving the desired result. Computer scientists call this an algorithm.
That’s a fancy word that basically means “recipe.” The design of algorithms is one of the most important
facets of computer science. In this book you will find techniques for designing and implementing algorithms.

One weakness of design is that it can only answer the question What is computable? in the positive. If I
can devise an algorithm, then the problem is solvable. However, failing to find an algorithm does not mean
that a problem is unsolvable. It may mean that I’m just not smart enough, or I haven’t hit upon the right idea
yet. This is where analysis comes in.

Analysis is the process of examining algorithms and problems mathematically. Computer scientists have
shown that some seemingly simple problems are not solvable by any algorithm. Other problems are in-
tractable. The algorithms that solve these problems take too long or require too much memory to be of
practical value. Analysis of algorithms is an important part of computer science; throughout this book we
will touch on some of the fundamental principles. Chapter 13 has examples of unsolvable and intractable
problems.

Some problems are too complex or ill-defined to lend themselves to analysis. In such cases, computer
scientists rely on experimentation; they actually implement systems and then study the resulting behavior.
Even when theoretical analysis is done, experimentation is often needed in order to verify and refine the

1.4. HARDWARE BASICS 3

Input Devices

CPU

Secondary

Memory
Main Memory

Output Devices

Figure 1.1: Functional View of a Computer.

analysis. For most problems, the bottom-line is whether a working, reliable system can be built. Often we
require empirical testing of the system to determine that this bottom-line has been met. As you begin writing
your own programs, you will get plenty of opportunities to observe your solutions in action.

1.4 Hardware Basics

You don’t have to know all the details of how a computer works to be a successful programmer, but under-
standing the underlying principles will help you master the steps we go through to put our programs into
action. It’s a bit like driving a car. Knowing a little about internal combustion engines helps to explain why
you have to do things like fill the gas tank, start the engine, step on the accelerator, etc. You could learn
to drive by just memorizing what to do, but a little more knowledge makes the whole process much more
understandable. Let’s take a moment to “look under the hood” of your computer.

Although different computers can vary significantly in specific details, at a higher level all modern digital
computers are remarkably similar. Figure 1.1 shows a functional view of a computer. The central processing
unit (CPU) is the “brain” of the machine. This is where all the basic operations of the computer are carried
out. The CPU can perform simple arithmetic operations like adding two numbers and can also do logical
operations like testing to see if two numbers are equal.

The memory stores programs and data. The CPU can only directly access information that is stored in
main memory (called RAM for Random Access Memory). Main memory is fast, but it is also volatile. That is,
when the power is turned off, the information in the memory is lost. Thus, there must also be some secondary
memory that provides more permanent storage. In a modern personal computer, this is usually some sort of
magnetic medium such as a hard disk (also called a hard drive) or floppy.

Humans interact with the computer through input and output devices. You are probably familiar with
common devices such as a keyboard, mouse, and monitor (video screen). Information from input devices is
processed by the CPU and may be shuffled off to the main or secondary memory. Similarly, when information
needs to be displayed, the CPU sends it to one or more output devices.

So what happens when you fire up your favorite game or word processing program? First, the instructions
that comprise the program are copied from the (more) permanent secondary memory into the main memory
of the computer. Once the instructions are loaded, the CPU starts executing the program.

Technically the CPU follows a process called the fetch execute cycle. The first instruction is retrieved
from memory, decoded to figure out what it represents, and the appropriate action carried out. Then the next
instruction is fetched, decoded and executed. The cycle continues, instruction after instruction. This is really
all the computer does from the time that you turn it on until you turn it off again: fetch, decode, execute. It
doesn’t seem very exciting, does it? But the computer can execute this stream of simple instructions with
blazing speed, zipping through millions of instructions each second. Put enough simple instructions together
in just the right way, and the computer does amazing things.

4 CHAPTER 1. COMPUTERS AND PROGRAMS

1.5 Programming Languages

Remember that a program is just a sequence of instructions telling a computer what to do. Obviously, we
need to provide those instructions in a language that a computer can understand. It would be nice if we could
just tell a computer what to do using our native language, like they do in science fiction movies. (“Computer,
how long will it take to reach planet Alphalpha at maximum warp?”) Unfortunately, despite the continuing
efforts of many top-flight computer scientists (including your author), designing a computer to understand
human language is still an unsolved problem.

Even if computers could understand us, human languages are not very well suited for describing complex
algorithms. Natural language is fraught with ambiguity and imprecision. For example, if I say: “I saw the
man in the park with the telescope,” did I have the telescope, or did the man? And who was in the park? We
understand each other most of the time only because all humans share a vast store of common knowledge and
experience. Even then, miscommunication is commonplace.

Computer scientists have gotten around this problem by designing notations for expressing computa-
tions in an exact, and unambiguous way. These special notations are called programming languages. Every
structure in a programming language has a precise form (its syntax) and a precise meaning (its semantics). A
programming language is something like a code for writing down the instructions that a computer will follow.
In fact, programmers often refer to their programs as computer code, and the process of writing an algorithm
in a programming language is called coding.

Python is one example of a programming language. It is the language that we will use throughout this
book. You may have heard of some other languages, such as C++, Java, Perl, Scheme, or BASIC. Although
these languages differ in many details, they all share the property of having well-defined, unambiguous syntax
and semantics.

All of the languages mentioned above are examples of high-level computer languages. Although they are
precise, they are designed to be used and understood by humans. Strictly speaking, computer hardware can
only understand very low-level language known as machine language.

Suppose we want the computer to add two numbers. The instructions that the CPU actually carries out
might be something like this.

load the number from memory location 2001 into the CPU
load the number from memory location 2002 into the CPU
Add the two numbers in the CPU
store the result into location 2003

This seems like a lot of work to add two numbers, doesn’t it? Actually, it’s even more complicated than this
because the instructions and numbers are represented in binary notation (as sequences of 0s and 1s).

In a high-level language like Python, the addition of two numbers can be expressed more naturally: c =
a + b. That’s a lot easier for us to understand, but we need some way to translate the high-level language
into the machine language that the computer can execute. There are two ways to do this: a high-level language
can either be compiled or interpreted.

A compiler is a complex computer program that takes another program written in a high-level language
and translates it into an equivalent program in the machine language of some computer. Figure 1.2 shows
a block diagram of the compiling process. The high-level program is called source code, and the resulting
machine code is a program that the computer can directly execute. The dashed line in the diagram represents
the execution of the machine code.

An interpreter is a program that simulates a computer that understands a high-level language. Rather than
translating the source program into a machine language equivalent, the interpreter analyzes and executes the
source code instruction by instruction as necessary. Figure 1.3 illustrates the process.

The difference between interpreting and compiling is that compiling is a one-shot translation; once a
program is compiled, it may be run over and over again without further need for the compiler or the source
code. In the interpreted case, the interpreter and the source are needed every time the program runs. Compiled
programs tend to be faster, since the translation is done once and for all, but interpreted languages lend
themselves to a more flexible programming environment as programs can be developed and run interactively.

The translation process highlights another advantage that high-level languages have over machine lan-
guage: portability. The machine language of a computer is created by the designers of the particular CPU.

1.6. THE MAGIC OF PYTHON 5

(Program)
Compiler Machine

 Code

Running

Inputs
Outputs

Source
Code

Program

Figure 1.2: Compiling a High-Level Language

Code Computer

Inputs

Outputs

Source

(Program)
Running an

Interpreter

Figure 1.3: Interpreting a High-Level Language.

Each kind of computer has its own machine language. A program for a Pentium CPU won’t run on a Mac-
intosh that sports a PowerPC. On the other hand, a program written in a high-level language can be run on
many different kinds of computers as long as there is a suitable compiler or interpreter (which is just another
program). For example, if I design a new computer, I can also program a Python interpreter for it, and then
any program written in Python can be run on my new computer, as is.

1.6 The Magic of Python

Now that you have all the technical details, it’s time to start having fun with Python. The ultimate goal is
to make the computer do our bidding. To this end, we will write programs that control the computational
processes inside the machine. You have already seen that there is no magic in this process, but in some ways
programming feels like magic.

The computational processes inside the computer are like magical spirits that we can harness for our
work. Unfortunately, those spirits only understand a very arcane language that we do not know. What we
need is a friendly Genie that can direct the spirits to fulfill our wishes. Our Genie is a Python interpreter. We
can give instructions to the Python interpreter, and it directs the underlying spirits to carry out our demands.
We communicate with the Genie through a special language of spells and incantations (i.e., Python). The
best way to start learning about Python is to let our Genie out of the bottle and try some spells.

You can start the Python interpreter in an interactive mode and type in some commands to see what
happens. When you first start the interpreter program, you may see something like the following:

Python 2.1 (#1, Jun 21 2001, 11:39:00)
[GCC pgcc-2.91.66 19990314 (egcs-1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.
>>>

The ����� is a Python prompt indicating that the Genie is waiting for us to give it a command. In programming
languages, a complete command is called a statement.

Here is a sample interaction with the Python interpreter.

6 CHAPTER 1. COMPUTERS AND PROGRAMS

>>> print "Hello, World"
Hello, World
>>> print 2 + 3
5
>>> print "2 + 3 =", 2 + 3
2 + 3 = 5

Here I have tried out three examples using the Python print statement. The first statement asks Python to
display the literal phrase Hello, World. Python responds on the next line by printing the phrase. The second
print statement asks Python to print the sum of 2 and 3. The third print combines these two ideas.
Python prints the part in quotes “2 + 3 =” followed by the result of adding 2 + 3, which is 5.

This kind of interaction is a great way to try out new things in Python. Snippets of interactive sessions
are sprinkled throughout this book. When you see the Python prompt ����� in an example, that should tip
you off that an interactive session is being illustrated. It’s a good idea to fire up Python and try the examples
for yourself.

Usually we want to move beyond snippets and execute an entire sequence of statements. Python lets us
put a sequence of statements together to create a brand-new command called a function. Here is an example
of creating a new function called hello.

>>> def hello():
print "Hello"
print "Computers are Fun"

>>>

The first line tells Python that we are defining a new function called hello. The following lines are indented
to show that they are part of the hello function. The blank line (obtained by hitting the <Enter> key
twice) lets Python know that the definition is finished, and the interpreter responds with another prompt.
Notice that the definition did not cause anything to happen. We have told Python what should happen when
the hello function is used as a command; we haven’t actually asked Python to perform it yet.

A function is invoked by typing its name. Here’s what happens when we use our hello command.

>>> hello()
Hello
Computers are Fun
>>>

Do you see what this does? The two print statements from the hello function are executed in sequence.
You may be wondering about the parentheses in the definition and use of hello. Commands can have

changeable parts called parameters that are placed within the parentheses. Let’s look at an example of a
customized greeting using a parameter. First the definition:

>>> def greet(person):
print "Hello", person
print "How are you?"

Now we can use our customized greeting.

>>> greet("John")
Hello John
How are you?
>>> greet("Emily")
Hello Emily
How are you?
>>>

1.6. THE MAGIC OF PYTHON 7

Can you see what is happening here? When we use greet we can send different names to customize the
result. We will discuss parameters in detail later on. For the time being, our functions will not use parameters,
so the parentheses will be empty, but you still need to include them when defining and using functions.

One problem with entering functions interactively at the Python prompt like this is that the definitions go
away when we quit Python. If we want to use them again the next time, we have to type them all over again.
Programs are usually created by typing definitions into a separate file called a module or script. This file is
saved on a disk so that it can be used over and over again.

A module file is just a text file, and you can create one using any program for editing text, like a notepad or
word processor program (provided you save your program as a “plain text” file). A special type of program
known as a programming environment simplifies the process. A programming environment is specifically
designed to help programmers write programs and includes features such as automatic indenting, color high-
lighting, and interactive development. The standard Python distribution includes a programming environment
called Idle that you may use for working on the programs in this book.

Let’s illustrate the use of a module file by writing and running a complete program. Our program will
illustrate a mathematical concept known as chaos. Here is the program as we would type it into Idle or some
other editor and save in a module file:

File: chaos.py
A simple program illustrating chaotic behavior.

def main():
print "This program illustrates a chaotic function"
x = input("Enter a number between 0 and 1: ")
for i in range(10):

x = 3.9 * x * (1 - x)
print x

main()

This file should be saved with with the name chaos.py. The .py extension indicates that this is a
Python module. You can see that this particular example contains lines to define a new function called main.
(Programs are often placed in a function called main.) The last line of the file is the command to invoke
this function. Don’t worry if you don’t understand what main actually does; we will discuss it in the next
section. The point here is that once we have a program in a module file, we can run it any time we want.

This program can be run in a number of different ways that depend on the actual operating system and
programming environment that you are using. If you are using a windowing system, you can run a Python
program by (double-)clicking on the module file’s icon. In a command-line situation, you might type a
command like python chaos.py. If you are using Idle (or another programming environment) you can
run a program by opening it in the editor and then selecting a command like import, run, or execute.

One method that should always work is to start the Python interpreter and then import the file. Here is
how that looks.

>>> import chaos
This program illustrates a chaotic function
Enter a number between 0 and 1: .25
0.73125
0.76644140625
0.698135010439
0.82189581879
0.570894019197
0.955398748364
0.166186721954
0.540417912062
0.9686289303
0.118509010176
>>>

8 CHAPTER 1. COMPUTERS AND PROGRAMS

Typing the first line import chaos tells the Python interpreter to load the chaos module from the file
chaos.py into main memory. Notice that I did not include the .py extension on the import line; Python
assumes the module will have a .py extension.

As Python imports the module file, each line executes. It’s just as if we had typed them one-by-one at the
interactive Python prompt. The def in the module causes Python to create the main function. When Python
encounters the last line of the module, the main function is invoked, thus running our program. The running
program asks the user to enter a number between 0 and 1 (in this case, I typed “.25”) and then prints out a
series of 10 numbers.

When you first import a module file in this way, Python creates a companion file with a .pyc extension.
In this example, Python creates another file on the disk called chaos.pyc. This is an intermediate file used
by the Python interpreter. Technically, Python uses a hybrid compiling/interpreting process. The Python
source in the module file is compiled into more primitive instructions called byte code. This byte code (the
.pyc) file is then interpreted. Having a .pyc file available makes importing a module faster the second time
around. However, you may delete the byte code files if you wish to save disk space; Python will automatically
re-create them as needed.

A module only needs to be imported into a session once. After the module has been loaded, we can run the
program again by asking Python to execute the main command. We do this by using a special dot notation.
Typing chaos.main() tells Python to invoke the main function in the chaos module. Continuing with
our example, here is how it looks when we rerun the program with � 26 as the input.

>>> chaos.main()
Enter a number between 0 and 1: .26
0.75036
0.73054749456
0.767706625733
0.6954993339
0.825942040734
0.560670965721
0.960644232282
0.147446875935
0.490254549376
0.974629602149
>>>

1.7 Inside a Python Program

The output from the chaos program may not look very exciting, but it illustrates a very interesting phe-
nomenon known to physicists and mathematicians. Let’s take a look at this program line by line and see what
it does. Don’t worry about understanding every detail right away; we will be returning to all of these ideas in
the next chapter.

The first two lines of the program start with the # character:

File: chaos.py
A simple program illustrating chaotic behavior.

These lines are called comments. They are intended for human readers of the program and are ignored by
Python. The Python interpreter always skips any text from the pound sign (#) through the end of a line.

The next line of the program begins the definition of a function called main.

def main():

Strictly speaking, it would not be necessary to create a main function. Since the lines of a module are
executed as they are loaded, we could have written our program without this definition. That is, the module
could have looked like this:

1.7. INSIDE A PYTHON PROGRAM 9

File: chaos.py
A simple program illustrating chaotic behavior.

print "This program illustrates a chaotic function"
x = input("Enter a number between 0 and 1: ")
for i in range(10):

x = 3.9 * x * (1 - x)
print x

This version is a bit shorter, but it is customary to place the instructions that comprise a program inside of a
function called main. One immediate benefit of this approach was illustrated above; it allows us to (re)run
the program by simply invoking chaos.main(). We don’t have to reload the module from the file in order
to run it again, which would be necessary in the main-less case.

The first line inside of main is really the beginning of our program.

print "This program illustrates a chaotic function"

This line causes Python to print a message introducing the program when it runs.
Take a look at the next line of the program.

x = input("Enter a number between 0 and 1: ")

Here x is an example of a variable. A variable is used to give a name to a value so that we can refer to it at
other points in the program. The entire line is an input statement. When Python gets to this statement, it
displays the quoted message Enter a number between 0 and 1: and then pauses, waiting for the
user to type something on the keyboard and press the <Enter> key. The value that the user types is then
stored as the variable x. In the first example shown above, the user entered .25, which becomes the value of
x.

The next statement is an example of a loop.

for i in range(10):

A loop is a device that tells Python to do the same thing over and over again. This particular loop says to
do something 10 times. The lines indented underneath the loop heading are the statements that are done 10
times. These form the body of the loop.

x = 3.9 * x * (1 - x)
print x

The effect of the loop is exactly the same as if we had written the body of the loop 10 times:

x = 3.9 * x * (1 - x)
print x
x = 3.9 * x * (1 - x)
print x
x = 3.9 * x * (1 - x)
print x
x = 3.9 * x * (1 - x)
print x
x = 3.9 * x * (1 - x)
print x
x = 3.9 * x * (1 - x)
print x
x = 3.9 * x * (1 - x)
print x
x = 3.9 * x * (1 - x)
print x
x = 3.9 * x * (1 - x)

10 CHAPTER 1. COMPUTERS AND PROGRAMS

print x
x = 3.9 * x * (1 - x)
print x

Obviously using the loop instead saves the programmer a lot of trouble.
But what exactly do these statements do? The first one performs a calculation.

x = 3.9 * x * (1 - x)

This is called an assignment statement. The part on the right side of the = is a mathematical expression.
Python uses the * character to indicate multiplication. Recall that the value of x is 0 � 25 (from the input
statement). The computed value is 3 � 9

�
0 � 25 � �

1 � 0 � 25 � or 0 � 73125. Once the value on the righthand side is
computed, it is stored back (or assigned) into the variable that appears on the lefthand side of the =, in this
case x. The new value of x (0 � 73125) replaces the old value (0 � 25).

The second line in the loop body is a type of statement we have encountered before, a print statement.

print x

When Python executes this statement the current value of x is displayed on the screen. So, the first number
of output is 0.73125.

Remember the loop executes 10 times. After printing the value of x, the two statements of the loop are
executed again.

x = 3.9 * x * (1 - x)
print x

Of course, now x has the value 0 � 73125, so the formula computes a new value of x as 3 � 9
�
0 � 73125 � �

1 �
0 � 73125 � , which is 0 � 76644140625.

Can you see how the current value of x is used to compute a new value each time around the loop? That’s
where the numbers in the example run came from. You might try working through the steps of the program
yourself for a different input value (say 0 � 5). Then run the program using Python and see how well you did
impersonating a computer.

1.8 Chaos and Computers

I said above that the chaos program illustrates an interesting phenomenon. What could be interesting about
a screen full of numbers? If you try out the program for yourself, you’ll find that, no matter what number
you start with, the results are always similar: the program spits back 10 seemingly random numbers between
0 and 1. As the program runs, the value of x seems to jump around, well, chaotically.

The function computed by this program has the general form: k
�
x � �

1 � x � , where k in this case is 3.9.
This is called a logistic function. It models certain kinds of unstable electronic circuits and is also sometimes
used to predict population under limiting conditions. Repeated application of the logistic function can pro-
duce chaos. Although our program has a well defined underlying behavior, the output seems unpredictable.

An interesting property of chaotic functions is that very small differences in the initial value can lead to
large differences in the result as the formula is repeatedly applied. You can see this in the chaos program by
entering numbers that differ by only a small amount. Here is the output from a modified program that shows
the results for initial values of 0 � 25 and 0 � 26 side by side.

input 0.25 0.26

0.731250 0.750360
0.766441 0.730547
0.698135 0.767707
0.821896 0.695499
0.570894 0.825942
0.955399 0.560671

1.9. EXERCISES 11

0.166187 0.960644
0.540418 0.147447
0.968629 0.490255
0.118509 0.974630

With very similar starting values, the outputs stay similar for a few iterations, but then differ markedly. By
about the fifth iteration, there no longer seems to be any relationship between the two models.

These two features of our chaos program, apparent unpredictability and extreme sensitivity to initial
values, are the hallmarks of chaotic behavior. Chaos has important implications for computer science. It
turns out that many phenomena in the real world that we might like to model and predict with our computers
exhibit just this kind of chaotic behavior. You may have heard of the so-called butterfly effect. Computer
models that are used to simulate and predict weather patterns are so sensitive that the effect of a single
butterfly flapping its wings in New Jersey might make the difference of whether or not rain is predicted in
Peoria.

It’s very possible that even with perfect computer modeling, we might never be able to measure existing
weather conditions accurately enough to predict weather more than a few days in advance. The measurements
simply can’t be precise enough to make the predictions accurate over a longer time frame.

As you can see, this small program has a valuable lesson to teach users of computers. As amazing as
computers are, the results that they give us are only as useful as the mathematical models on which the
programs are based. Computers can give incorrect results because of errors in programs, but even correct
programs may produce erroneous results if the models are wrong or the initial inputs are not accurate enough.

1.9 Exercises

1. Compare and contrast the following pairs of concepts from the chapter.

(a) Hardware vs. Software

(b) Algorithm vs. Program

(c) Programming Language vs. Natural Language

(d) High-Level Language vs. Machine Language

(e) Interpreter vs. Compiler

(f) Syntax vs. Semantics

2. List and explain in your own words the role of each of the five basic functional units of a computer
depicted in Figure 1.1.

3. Write a detailed algorithm for making a peanut butter and jelly sandwich (or some other simple every-
day activity).

4. As you will learn in a later chapter, many of the numbers stored in a computer are not exact values, but
rather close approximations. For example, the value 0.1, might be stored as 0.10000000000000000555.
Usually, such small differences are not a problem; however, given what you have learned about chaotic
behavior in Chapter 1, you should realize the need for caution in certain situations. Can you think of
examples where this might be a problem? Explain.

5. Trace through the Chaos program from Section 1.6 by hand using 0 � 15 as the input value. Show the
sequence of output that results.

6. Enter and run the Chaos program from Section 1.6 using whatever Python implementation you have
available. Try it out with various values of input to see that it functions as described in the chapter.

7. Modify the Chaos program from Section 1.6 using 2.0 in place of 3.9 as the multiplier in the logistic
function. Your modified line of code should look like this:

12 CHAPTER 1. COMPUTERS AND PROGRAMS

x = 2.0 * x * (1 - x)

Run the program for various input values and compare the results to those obtained from the original
program. Write a short paragraph describing any differences that you notice in the behavior of the two
versions.

8. Modify the Chaos program from Section 1.6 so that it prints out 20 values instead of 10.

9. (Advanced) Modify the Chaos program so that it accepts two inputs and then prints a table with two
columns similar to the one shown in Section 1.8. (Note: You will probably not be able to get the
columns to line up as nicely as those in the example. Chapter 4 discusses how to print numbers with a
fixed number of decimal places.)

Chapter 2

Writing Simple Programs

As you saw in the previous chapter, it is easy to run programs that have already been written. The hard part is
actually coming up with the program in the first place. Computers are very literal, and they must be told what
to do right down to the last detail. Writing large programs is a daunting task. It would be almost impossible
without a systematic approach.

2.1 The Software Development Process

The process of creating a program is often broken down into stages according to the information that is
produced in each phase. In a nutshell, here’s what you should do.

Formulate Requirements Figure out exactly what the problem to be solved is. Try to understand as much
as possible about it. Until you really know what the problem is, you cannot begin to solve it.

Determine Specifications Describe exactly what your program will do. At this point, you should not worry
about how your program will work, but rather with deciding exactly what it will accomplish. For
simple programs this involves carefully describing what the inputs and outputs of the program will be
and how they relate to each other.

Create a Design Formulate the overall structure of the program. This is where the how of the program gets
worked out. The main task is to design the algorithm(s) that will meet the specifications.

Implement the Design Translate the design into a computer language and put it into the computer. In this
book, we will be implementing our algorithms as Python programs.

Test/Debug the Program Try out your program and see if it works as expected. If there are any errors (often
called bugs), then you should go back and fix them. The process of locating and fixing errors is called
debugging a program.

Maintain the Program Continue developing the program in response to the needs of your users. Most
programs are never really finished; they keep evolving over years of use.

2.2 Example Program: Temperature Converter

Let’s go through the steps of the software development process with a simple real-world example. Suzie
Programmer has a problem. Suzie is an American computer science student spending a year studying in
Europe. She has no problems with language, as she is fluent in many languages (including Python). Her
problem is that she has a hard time figuring out the temperature in the morning so that she knows how to
dress for the day. Suzie listens to the weather report each morning, but the temperatures are given in degrees
Celsius, and she is used to Fahrenheit.

13

14 CHAPTER 2. WRITING SIMPLE PROGRAMS

Fortunately, Suzie has an idea to solve the problem. Being a computer science major, she never goes
anywhere without her laptop computer. She thinks it might be possible that a computer program could help
her out.

Suzie begins with the requirements of her problem. In this case, the problem is pretty clear: the radio an-
nouncer gives temperatures in degrees Celsius, but Suzie only comprehends temperatures that are in degrees
Fahrenheit. That’s the crux of the problem.

Next, Suzie considers the specifications of a program that might help her out. What should the input
be? She decides that her program will allow her to type in the temperature in degrees Celsius. And the
output? The program will display the temperature converted into degrees Fahrenheit. Now she needs to
specify the exact relationship of the output to the input. Suzie does some quick figuring to derive the formula
F �

�
9

�
5 � C � 32 (Can you see how?). That seems an adequate specification.

Notice that this describes one of many possible programs that could solve this problem. If Suzie had
background in the field of Artificial Intelligence (AI), she might consider writing a program that would
actually listen to the radio announcer to get the current temperature using speech recognition algorithms. For
output, she might have the computer control a robot that goes to her closet and picks an appropriate outfit
based on the converted temperature. This would be a much more ambitious project, to say the least!

Certainly the robot program would also solve the problem identified in the requirements. The purpose of
specification is to decide exactly what this particular program will do to solve a problem. Suzie knows better
than to just dive in and start writing a program without first having a clear idea of what she is trying to build.

Suzie is now ready to design an algorithm for her problem. She immediately realizes that this is a simple
algorithm that follows a standard pattern: Input, Process, Output (IPO). Her program will prompt the user
for some input information (the Celsius temperature), process it to convert to a Fahrenheit temperature, and
then output the result by displaying it on the computer screen.

Suzie could write her algorithm down in a computer language. However, the precision of writing it out
formally tends to stifle the creative process of developing the algorithm. Instead, she writes her algorithm
using pseudocode. Pseudocode is just precise English that describes what a program does. It is meant to
communicate algorithms without all the extra mental overhead of getting the details right in any particular
programming language.

Here is Suzie’s completed algorithm:

Input the temperature in degrees Celsius (call it celsius)
Calculate fahrenheit as 9/5 celsius + 32
Output fahrenheit

The next step is to translate this design into a Python program. This is straightforward, as each line of the
algorithm turns into a corresponding line of Python code.

convert.py
A program to convert Celsius temps to Fahrenheit
by: Suzie Programmer

def main():
celsius = input("What is the Celsius temperature? ")
fahrenheit = 9.0 / 5.0 * celsius + 32
print "The temperature is", fahrenheit, "degrees Fahrenheit."

main()

See if you can figure out what each line of this program does. Don’t worry if some parts are a bit confusing.
They will be discussed in detail in the next section.

After completing her program, Suzie tests it to see how well it works. She uses some inputs for which
she knows the correct answers. Here is the output from two of her tests.

What is the Celsius temperature? 0
The temperature is 32.0 degrees fahrenheit.

2.3. ELEMENTS OF PROGRAMS 15

What is the Celsius temperature? 100
The temperature is 212.0 degrees fahrenheit.

You can see that Suzie used the values of 0 and 100 to test her program. It looks pretty good, and she is
satisfied with her solution. Apparently, no debugging is necessary.

2.3 Elements of Programs

Now that you know something about the programming process, you are almost ready to start writing programs
on your own. Before doing that, though, you need a more complete grounding in the fundamentals of Python.
The next few sections will discuss technical details that are essential to writing correct programs. This
material can seem a bit tedious, but you will have to master these basics before plunging into more interesting
waters.

2.3.1 Names

You have already seen that names are an important part of programming. We give names to modules (e.g.,
convert) and to the functions within modules (e.g., main). Variables are used to give names to values (e.g.,
celsius and fahrenheit). Technically, all these names are called identifiers. Python has some rules
about how identifiers are formed. Every identifier must begin with a letter or underscore (the “ ” character)
which may be followed by any sequence of letters, digits, or underscores. This implies that a single identifier
cannot contain any spaces.

According to these rules, all of the following are legal names in Python:

x
celsius
spam
spam2
SpamAndEggs
Spam_and_Eggs

Identifiers are case-sensitive, so spam, Spam, sPam, and SPAM are all different names to Python. For the
most part, programmers are free to choose any name that conforms to these rules. Good programmers always
try to choose names that describe the thing being named.

One other important thing to be aware of is that some identifiers are part of Python itself. These names
are called reserved words and cannot be used as ordinary identifiers. The complete list of Python reserved
words is shown in Table 2.1.

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

Table 2.1: Python Reserved Words.

2.3.2 Expressions

Programs manipulate data. The fragments of code that produce or calculate new data values are called
expressions. So far our program examples have dealt mostly with numbers, so I’ll use numeric data to
illustrate expressions.

16 CHAPTER 2. WRITING SIMPLE PROGRAMS

The simplest kind of expression is a literal. A literal is used to indicate a specific value. In chaos.py
you can find the numbers 3.9 and 1. The convert.py program contains 9.0, 5.0, and 32. These are
all examples of numeric literals, and their meaning is obvious: 32 represents, well, 32.

A simple identifier can also be an expression. We use identifiers as variables to give names to values.
When an identifier appears in an expression, this value is retrieved to provide a result for the expression.
Here is an interaction with the Python interpreter that illustrates the use of variables as expressions.

>>> x = 5
>>> x
5
>>> print x
5
>>> print spam
Traceback (innermost last):

File "<pyshell#34>", line 1, in ?
print spam

NameError: spam
>>>

First the variable x is assigned the value 5 (using the numeric literal 5). The next line has Python evaluate the
expression x. Python spits back 5, which is the value that was just assigned to x. Of course, we get the same
result when we put x in a print statement. The last example shows what happens when we use a variable that
has not been assigned a value. Python cannot find a value, so it reports a Name Error. This says that there is
no value with that name. A variable must always be assigned a value before it can be used in an expression.

More complex and interesting expressions can be constructed by combining simpler expressions with
operators. For numbers, Python provides the normal set of mathematical operations: addition, subtraction,
multiplication, division, and exponentiation. The corresponding Python operators are: +, -, *, /, and **.
Here are some examples of complex expressions from chaos.py and convert.py

3.9 * x * (1 - x)
9.0 / 5.0 * celsius + 32

Spaces are irrelevant within an expression. The last expression could have been written 9.0/5.0*celsius+32
and the result would be exactly the same. Usually it’s a good idea to place some spaces in expressions to
make them easier to read.

Python’s mathematical operators obey the same rules of precedence and associativity that you learned
in your math classes, including using parentheses to modify the order of evaluation. You should have lit-
tle trouble constructing complex expressions in your own programs. Do keep in mind that only the round
parentheses are allowed in expressions, but you can nest them if necessary to create expressions like this.

((x1 - x2) / 2*n) + (spam / k**3)

If you are reading carefully, you may be curious why, in her temperature conversion program, Suzie
Programmer chose to write 9.0/5.0 rather than 9/5. Both of these are legal expressions, but they give
different results. This mystery will be discussed in Chapter 3. If you can’t stand the wait, try them out for
yourself and see if you can figure out what’s going on.

2.4 Output Statements

Now that you have the basic building blocks, identifier and expression, you are ready for a more complete
description of various Python statements. You already know that you can display information on the screen
using Python’s print statement. But what exactly can be printed? Python, like all programming languages,
has a precise set of rules for the syntax (form) and semantics (meaning) of each statement. Computer scientists
have developed sophisticated notations called meta-languages for describing programming languages. In this
book we will rely on a simple template notation to illustrate the syntax of statements.

Here are the possible forms of the print statement:

2.5. ASSIGNMENT STATEMENTS 17

print
print <expr>
print <expr>, <expr>, ..., <expr>
print <expr>, <expr>, ..., <expr>,

In a nutshell, these templates show that a print statement consists of the keyword print followed by zero
or more expressions, which are separated by commas. The angle bracket notation (���) is used to indicate
“slots” that are filled in by other fragments of Python code. The name inside the brackets indicate what is
missing; expr stands for an expression. The ellipses (“...”) indicate an indefinite series (of expressions,
in this case). You don’t actually type the dots. The fourth version shows that a print statement may be
optionally ended with a comma. That is all there is to know about the syntax of print.

As far as semantics, a print statement displays information in textual form. Any supplied expressions
are evaluated left to right, and the resulting values are displayed on a single line of output in a left-to-right
fashion. A single blank space character is placed between the displayed values.

Normally, successive print statements will display on separate lines of the screen. A bare print (first
version above) can be used to get a blank line of output. If a print statement ends with a comma (fourth
version), a final space is appended to the line, but the output does not advance to the next line. Using this
method, multiple print statements can be used to generate a single line of output.

Putting it all together, this sequence of print statements

print 3+4
print 3, 4, 3 + 4
print
print 3, 4,
print 3+4
print "The answer is", 3 + 4

produces this output

7
3 4 7

3 4 7
The answer is 7

That last print statement may be a bit confusing. According to the syntax templates above, print
requires a sequence of expressions. That means "The answer is" must be an expression. In fact, it is
an expression, but it doesn’t produce a number. Instead, it produces another kind of data called a string.
A sequence of characters enclosed in quotes is a string literal. Strings will be discussed in detail in a later
chapter. For now, consider this a convenient way of labeling output.

2.5 Assignment Statements

2.5.1 Simple Assignment

One of the most important kinds of statements in Python is the assignment statement. We’ve already seen a
number of these in our previous examples. The basic assignment statement has this form:

<variable> = <expr>

Here variable is an identifier and expr is an expression. The semantics of the assignment is that the
expression on the right side is evaluated to produce a value, which is then associated with the variable named
on the left side.

Here are some of the assignments we’ve already seen.

x = 3.9 * x * (1 - x)
fahrenheit = 9.0 / 5.0 * celsius + 32
x = 5

18 CHAPTER 2. WRITING SIMPLE PROGRAMS

A variable can be assigned many times. It always retains the value of the most recent assignment. Here
is an interactive Python session that demonstrates the point:

>>> myVar = 0
>>> myVar
0
>>> myVar = 7
>>> myVar
7
>>> myVar = myVar + 1
>>> myVar
8

The last assignment statement shows how the current value of a variable can be used to update its value. In
this case I simply added one to the previous value. The chaos.py program from Chapter 1 did something
similar, though a bit more complex. Remember, the values of variables can change; that’s why they’re called
variables.

2.5.2 Assigning Input

The purpose of an input statement is to get some information from the user of a program and store it into a
variable. Some programming languages have a special statement to do this. In Python, input is accomplished
using an assignment statement combined with a special expression called input. This template shows the
standard form.

<variable> = input(<prompt>)

Here prompt is an expression that serves to prompt the user for input; this is almost always a string literal
(i.e., some text inside of quotation marks).

When Python encounters an input expression, it evaluates the prompt and displays the result of the
prompt on the screen. Python then pauses and waits for the user to type an expression and press the

� Enter � key. The expression typed by the user is then evaluated to produce the result of the input.
This sounds complicated, but most uses of input are straightforward. In our example programs, input
statements are used to get numbers from the user.

x = input("Please enter a number between 0 and 1: ")
celsius = input("What is the Celsius temperature? ")

If you are reading programs carefully, you probably noticed the blank space inside the quotes at the end
of these prompts. I usually put a space at the end of a prompt so that the input that the user types does not
start right next to the prompt. Putting a space in makes the interaction easier to read and understand.

Although these two examples specifically prompt the user to enter a number, a number is just a numeric
literal—a simple Python expression. In fact, any valid expression would be just as acceptable. Consider the
following interaction with the Python interpreter.

>>> ans = input("Enter an expression: ")
Enter an expression: 3 + 4 * 5
>>> print ans
23
>>>

Here, when prompted to enter an expression, the user typed “3 + 4 * 5.” Python evaluated this expression and
stored the value in the variable ans. When printed, we see that ans got the value 23 as expected.

In a way, the input is like a delayed expression. The example interaction produced exactly the same
result as if we had simply done ans = 3 + 4 * 5. The difference is that the expression was supplied
at the time the statement was executed instead of being determined when the statement was written by the
programmer. Thus, the user can supply formulas for a program to evaluate.

2.5. ASSIGNMENT STATEMENTS 19

2.5.3 Simultaneous Assignment

There is an alternative form of the assignment statement that allows us to calculate several values all at the
same time. It looks like this:

<var>, <var>, ..., <var> = <expr>, <expr>, ..., <expr>

This is called simultaneous assignment. Semantically, this tells Python to evaluate all the expressions on
the right-hand side and then assign these values to the corresponding variables named on the left-hand side.
Here’s an example.

sum, diff = x+y, x-y

Here sum would get the sum of x and y and diff would get the difference.
This form of assignment seems strange at first, but it can prove remarkably useful. Here’s an example.

Suppose you have two variables x and y and you want to swap the values. That is, you want the value
currently stored in x to be in y and the value that is currently in y to be stored in x. At first, you might think
this could be done with two simple assignments.

x = y
y = x

This doesn’t work. We can trace the execution of these statements step-by-step to see why.
Suppose x and y start with the values 2 and 4. Let’s examine the logic of the program to see how the

variables change. The following sequence uses comments to describe what happens to the variables as these
two statements are executed.

variables x y
initial values 2 4
x = y
now 4 4
y = x
final 4 4

See how the first statement clobbers the original value of x by assigning to it the value of y? When we then
assign x to y in the second step, we just end up with two copies of the original y value.

One way to make the swap work is to introduce an additional variable that temporarily remembers the
original value of x.

temp = x
x = y
y = temp

Let’s walk-through this sequence to see how it works.

variables x y temp
initial values 2 4 no value yet
temp = x
2 4 2
x = y
4 4 2
y = temp
4 2 2

As you can see from the final values of x and y, the swap was successful in this case.
This sort of three-way shuffle is common in other programming languages. In Python, the simultaneous

assignment statement offers an elegant alternative. Here is a simpler Python equivalent:

x, y = y, x

20 CHAPTER 2. WRITING SIMPLE PROGRAMS

Because the assignment is simultaneous, it avoids wiping out one of the original values.
Simultaneous assignment can also be used to get multiple values from the user in a single input. Con-

sider this program for averaging exam scores:

avg2.py
A simple program to average two exam scores
Illustrates use of multiple input

def main():
print "This program computes the average of two exam scores."

score1, score2 = input("Enter two scores separated by a comma: ")
average = (score1 + score2) / 2.0

print "The average of the scores is:", average

main()

The program prompts for two scores separated by a comma. Suppose the user types 86, 92. The effect of
the input statement is then the same as if we had done this assignment:

score1, score2 = 86, 92

We have gotten a value for each of the variables in one fell swoop. This example used just two values, but it
could be generalized to any number of inputs.

Of course, we could have just gotten the input from the user using separate input statements.

score1 = input("Enter the first score: ")
score2 = input("Enter the second score: ")

In some ways this may be better, as the separate prompts are more informative for the user. In this example
the decision as to which approach to take is largely a matter of taste. Sometimes getting multiple values in a
single input provides a more intuitive user interface, so it is nice technique to have in your toolkit.

2.6 Definite Loops

You already know that programmers use loops to execute a sequence of statements several times in succession.
The simplest kind of loop is called a definite loop. This is a loop that will execute a definite number of times.
That is, at the point in the program when the loop begins, Python knows how many times to go around
(or iterate) the body of the loop. For example, the Chaos program from Chapter 1 used a loop that always
executed exactly ten times.

for i in range(10):
x = 3.9 * x * (1 - x)
print x

This particular loop pattern is called a counted loop, and it is built using a Python for statement. Before
considering this example in detail, let’s take a look at what for loops are all about.

A Python for loop has this general form.

for <var> in <sequence>:
<body>

The body of the loop can be any sequence of Python statements. The start and end of the body is indicated
by its indentation under the loop heading (the for <var> in <sequence>: part).

The meaning of the for statement is a bit awkward to explain in words, but is very easy to understand,
once you get the hang of it. The variable after the keyword for is called the loop index. It takes on

2.6. DEFINITE LOOPS 21

each successive value in the sequence, and the statements in the body are executed once for each value.
Usually, the sequence portion is a list of values. You can build a simple list by placing a sequence of
expressions in square brackets. Some interactive examples help to illustrate the point:

>>> for i in [0,1,2,3]:
print i

0
1
2
3

>>> for odd in [1, 3, 5, 7, 9]:
print odd * odd

1
9
25
49
81

You can see what is happening in these two examples. The body of the loop is executed using each
successive value in the list. The length of the list determines the number of times the loop will execute. In
the first example, the list contains the four values 0 through 3, and these successive values of i are simply
printed. In the second example, odd takes on the values of the first five odd natural numbers, and the body
of the loop prints the squares of these numbers.

Now, let’s go back to the example which began this section (from chaos.py) Look again at the loop
heading:

for i in range(10):

Comparing this to the template for the for loop shows that the last portion, range(10) must be some kind
of sequence. Let’s see what the Python interpreter tells us.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Do you see what is happening here? The range function is a built-in Python command that simply produces
a list of numbers. The loop using range(10) is exactly equivalent to one using a list of 10 numbers.

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

In general, range(<expr>) will produce a list of numbers that starts with 0 and goes up to, but not
including, the value of <expr>. If you think about it, you will see that the value of the expression determines
the number of items in the resulting list. In chaos.py we did not even care what values the loop index
variable used (since the value of i was not referred to anywhere in the loop body). We just needed a list of
length 10 to make the body execute 10 times.

As I mentioned above, this pattern is called a counted loop, and it is a very common way to use definite
loops. When you want to do something in your program a certain number of times, use a for loop with a
suitable range.

for <variable> in range(<expr>):

The value of the expression determines how many times the loop executes. The name of the index variable
doesn’t really matter much; programmers often use i or j as the loop index variable for counted loops. Just
be sure to use an identifier that you are not using for any other purpose. Otherwise you might accidentally
wipe out a value that you will need later.

22 CHAPTER 2. WRITING SIMPLE PROGRAMS

The interesting and useful thing about loops is the way that they alter the “flow of control” in a program.
Usually we think of computers as executing a series of instructions in strict sequence. Introducing a loop
causes Python to go back and do some statements over and over again. Statements like the for loop are
called control structures because they control the execution of other parts of the program.

Some programmers find it helpful to think of control structures in terms of pictures called flowcharts. A
flowchart is a diagram that uses boxes to represent different parts of a program and arrows between the boxes
to show the sequence of events when the program is running. Figure 2.1 depicts the semantics of the for
loop as a flowchart.

yes

more items in <sequence>
no

<var> = next item

<body>

Figure 2.1: Flowchart of a for loop.

If you are having trouble understanding the for loop, you might find it useful to study the flowchart.
The diamond shape box in the flowchart represents a decision in the program. When Python gets the the loop
heading, it checks to see if there are any (more) items left if the sequence. If the answer is yes, the value of
the loop index variable is set to the next item in the sequence, and then the loop body is executed. Once the
body is complete, the program goes back to the loop heading and checks for another value in the sequence.
The loop quits when there are no more items, and the program moves on to the statements that come after the
loop.

2.7 Example Program: Future Value

Let’s close the chapter with one more example of the programming process in action. We want to develop a
program to determine the future value of an investment. Let’s start with an analysis of the problem (require-
ments). You know that money that is deposited in a bank account earns interest, and this interest accumulates
as the years pass. How much will an account be worth ten years from now? Obviously it depends on how
much money we start with (the principal) and how much interest the account earns. Given the principal and
the interest rate, a program should be able to calculate the value of the investment ten years into the future.

We continue by developing the exact specifications for the program. Recall, this is a description of what
the program will do. What exactly should the inputs be? We need the user to enter the initial amount to invest,
the principal. We will also need some indication of how much interest the account earns. This depends both
on the interest rate and how often the interest is compounded. One simple way of handling this is to have the
user enter an annualized percentage rate. Whatever the actual interest rate and compounding frequency, the
annualized rate tells us how much the investment accrues in one year. If the annualized interest is 3%, then a

2.7. EXAMPLE PROGRAM: FUTURE VALUE 23

$100 investment will grow to $103 in one year’s time. How should the user represent an annualized rate of
3%? There are a number of reasonable choices. Let’s assume the user supplies a decimal, so the rate would
be entered as 0.03.

This leads us to the following specification.

Program Future Value

Inputs

principal The amount of money being invested in dollars.

apr The annualized percentage rate expressed as a decimal fraction.

Output The value of the investment 10 years into the future.

Relationship Value after one year is given by principal
�
1 � apr � . This formula needs to be applied 10 times.

Next we design an algorithm for the program. We’ll use pseudocode, so that we can formulate our ideas
without worrying about all the rules of Python. Given our specification, the algorithm seems straightforward.

Print an introduction
Input the amount of the principal (principal)
Input the annualized percentage rate (apr)
Repeat 10 times:

principal = principal * (1 + apr)
Output the value of principal

Now that we’ve thought the problem all the way through to pseudocode, it’s time to put our new Python
knowledge to work and develop a program. Each line of the algorithm translates into a statement of Python.

Print an introduction (print statement, Section 2.4)
print "This program calculates the future value of a 10-year investment"

Input the amount of the principal (input statement, Section 2.5.2)
principal = input("Enter the initial principal: ")

Input the annualized percentage rate (input statement, Section 2.5.2)
apr = input("Enter the annualized interest rate: ")

Repeat 10 times: (counted loop, Section 2.6)
for i in range(10):

Calculate principal = principal * (1 + apr) (simple assignment statement, Section 2.5.1)
principal = principal * (1 + apr)

Output the value of the principal (print statement, Section 2.4)
print "The amount in 10 years is:", principal

All of the statement types in this program have been discussed in detail in this chapter. If you have any
questions, you should go back and review the relevant descriptions. Notice especially the counted loop
pattern is used to apply the interest formula 10 times.

That about wraps it up. Here is the completed program.

futval.py
A program to compute the value of an investment
carried 10 years into the future

24 CHAPTER 2. WRITING SIMPLE PROGRAMS

by: John M. Zelle

def main():
print "This program calculates the future value of a 10-year investment."

principal = input("Enter the initial principal: ")
apr = input("Enter the annualized interest rate: ")

for i in range(10):
principal = principal * (1 + apr)

print "The amount in 10 years is:", principal

main()

Notice that I have added a few blank lines to separate the Input, Processing, and Output portions of the
program. Strategically placed “white space” can help make your programs more readable.

That’s about it for this example; I leave the testing and debugging as an exercise for you.

2.8 Exercises

1. List and describe in your own words the six steps in the software development process.

2. Write out the chaos.py program (Section 1.6) and identify the parts of the program as follows:

� Circle each identifier.
� Underline each expression.
� Put a comment at the end of each line indicating the type of statement on that line (output, as-

signment, input, loop, etc.)

3. A user-friendly program should print an introduction that tells the user what the program does. Modify
the convert.py program (Section 2.2) to print an introduction.

4. Modify the avg2.py program (Section 2.5.3) to find the average of three exam scores.

5. Modify the futval.py program (Section 2.7) so that the number of years for the investment is also
a user input. Make sure to change the final message to reflect the correct number of years.

6. Modify the convert.py program (Section 2.2) with a loop so that it executes 5 times before quitting
(i.e., it converts 5 temperatures in a row).

7. Modify the convert.py program (Section 2.2) so that it computes and prints a table of Celsius
temperatures and the Fahrenheit equivalents every 10 degrees from 0C to 100C.

8. Write a program that converts from Fahrenheit to Celsius.

9. Modify the futval.py program (Section 2.7) so that it computes the actual purchasing power of
the investment, taking inflation into account. The yearly rate of inflation will be a second input. The
adjustment is given by this formula:

principal = principal/(1 + inflation)

Chapter 3

Computing with Numbers

When computers were first developed, they were seen primarily as number crunchers, and that is still an
important application. As you have seen, problems that involve mathematical formulas are easy to translate
into Python programs. This chapter takes a closer look at computations involving numeric calculations.

3.1 Numeric Data Types

The information that is stored and manipulated by computer programs is generically referred to as data.
Different kinds of data will be stored and manipulated in different ways. Consider this program that calculates
the value of loose change.

change.py
A program to calculate the value of some change in dollars

def main():
print "Change Counter"
print
print "Please enter the count of each coin type."
quarters = input("Quarters: ")
dimes = input("Dimes: ")
nickels = input("Nickels: ")
pennies = input("Pennies: ")
total = quarters * .25 + dimes * .10 + nickels * .05 + pennies * .01
print
print "The total value of your change is", total

main()

Here is an example of the output.

Change Counter

Please enter the count of each coin type.
Quarters: 5
Dimes: 3
Nickels: 4
Pennies: 6

The total value of your change is 1.81

This program actually manipulates two different kinds of numbers. The values entered by the user (5, 3,
4, 6) are are whole numbers; they don’t have any fractional part. The values of the coins (.25, .10, .05, .01)

25

26 CHAPTER 3. COMPUTING WITH NUMBERS

are decimal fractions. Inside the computer, whole numbers and numbers that have fractional components are
represented differently. Technically, we say that these are two different data types.

The data type of an object determines what values it can have and what operations can be performed on it.
Whole numbers are represented using the integer data type (int for short). Values of type int can be positive
or negative whole numbers. Numbers that can have fractional parts are represented as floating point (or float)
values. So how do we tell whether a number is an int or a float? A numeric literal that does not contain a

decimal point produces an int value, while a literal that has a decimal point is represented by a float (even if
the fractional part is 0).

Python provides a special function called type that tells us the data type of any value. Here is an
interaction with the Python interpreter showing the difference between int and float literals.

>>> type(3)
<type ’int’>
>>> type(3.14)
<type ’float’>
>>> type(3.0)
<type ’float’>
>>> myInt = -32
>>> type(myInt)
<type ’int’>
>>> myFloat = 32.0
>>> type(myFloat)
<type ’float’>

You may be wondering why there are two different data types for numbers. One reason has to do with
program style. Values that represent counts can’t be fractional; we can’t have 3 1

2 quarters, for example. Using
an int value tells the reader of a program that the value can’t be a fraction. Another reason has to do with the
efficiency of various operations. The underlying algorithms that perform computer arithmetic are simpler,
and therefore faster, for ints than the more general algorithms required for float values.

You should be warned that the float type only stores approximations. There is a limit to the precision, or
accuracy, of the stored values. Since float values are not exact, while ints always are, your general rule of
thumb should be: if you don’t absolutely need fractional values, use an int.

operator operation
� addition

� subtraction
� multiplication�

division
��� exponentiation
% remainder

abs() absolute value

Table 3.1: Python built-in numeric operations.

A value’s data type determines what operations can be used on it. As we have seen, Python supports
the usual mathematical operations on numbers. Table 3.1 summarizes these operations. Actually, this table
is somewhat misleading since the two numeric data types have their own operations. When addition is
performed on floats, the computer performs a floating point addition. Whereas, with ints, the computer
performs an integer addition.

Consider the following interaction with Python:

>>> 3.0 + 4.0
7.0
>>> 3 + 4
7

3.2. USING THE MATH LIBRARY 27

>>> 3.0 * 4.0
12.0
>>> 3 * 4
12
>>> 10.0 / 3.0
3.33333333333
>>> 10 / 3
3
>>> 10 % 3
1
>>> abs(5)
5
>>> abs(-3.5)
3.5

Notice how operations on floats produce floats, and operations on ints produce ints. Most of the time, we
don’t have to worry about what type of operation is being performed; for example, integer addition produces
pretty much the same result as floating point addition.

However, in the case of division, the results are quite different. Integer division always produces an
integer, discarding any fractional result. Think of integer division as “gozinta.” The expression, 10 / 3
produces 3 because three gozinta (goes into) ten three times (with a remainder of one). The third to last
example shows the remainder operation (%) in action. The remainder of dividing 10 by 3 is 1. The last two
examples illustrate taking the absolute value of an expression.

You may recall from Chapter 2 that Suzie Programmer used the expression 9.0 / 5.0 in her tempera-
ture conversion program rather than 9 / 5. Now you know why. The former gives the correct multiplier of
1 � 8, while the latter yields just 1, since 5 gozinta 9 just once.

3.2 Using the Math Library

Besides the operations listed in Table 3.1, Python provides many other useful mathematical functions in a
special math library. A library is just a module that contains some useful definitions. Our next program
illustrates the use of this library to compute the roots of quadratic equations.

A quadratic equation has the form ax2 � bx � c � 0. Such an equation has two solutions for the value of
x given by the quadratic formula:

x �
� b
���

b2 � 4ac
2a

Let’s write a program that can find the solutions to a quadratic equation. The input to the program will be the
values of the coefficients a, b, and c. The outputs are the two values given by the quadratic formula. Here’s a
program that does the job.

quadratic.py
A program that computes the real roots of a quadratic equation.
Illustrates use of the math library.
Note: this program crashes if the equation has no real roots.

import math # Makes the math library available.

def main():
print "This program finds the real solutions to a quadratic"
print

a, b, c = input("Please enter the coefficients (a, b, c): ")

discRoot = math.sqrt(b * b - 4 * a * c)

28 CHAPTER 3. COMPUTING WITH NUMBERS

root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)

print
print "The solutions are:", root1, root2

main()

This program makes use of the square root function sqrt from the math library module. The line at the
top of the program:

import math

tells Python that we are using the math module. Importing a module makes whatever is defined in it available
to the program. To compute � x, we use math.sqrt(x). You may recall this dot notation from Chapter 1.
This tells Python to use the sqrt function that “lives” in the math module. In the quadratic program we
calculate

�
b2 � 4 � ac with the line

discRoot = math.sqrt(b * b - 4 * a * c)

Here is how the program looks in action:

This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 3, 4, -2

The solutions are: 0.387425886723 -1.72075922006

This program is fine as long as the quadratics we try to solve have real solutions. However, some inputs
will cause the program to crash. Here’s another example run:

This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1, 2, 3
Traceback (innermost last):

File "<stdin>", line 1, in ?
File "quadratic.py", line 13, in ?
discRoot = math.sqrt(b * b - 4 * a * c)

OverflowError: math range error

The problem here is that b2 � 4 � a � c � 0, and the sqrt function is unable to compute the square root of
a negative number. Python prints a math range error. Right now, we don’t have the tools to fix this
problem, so we will just have to assume that the user gives us solvable equations.

Actually, quadratic.py did not need to use the math library. We could have taken the square root
using exponentiation **. (Can you see how?) Using math.sqrt is somewhat more efficient and allowed
me to illustrate the use of the math library. In general, if your program requires a common mathematical
function, the math library is the first place to look. Table 3.2 shows some of the other functions that are
available in the math library.

3.3 Accumulating Results: Factorial

Suppose you have a root beer sampler pack containing six different kinds of root beer. Drinking the various
flavors in different orders might affect how good they taste. If you wanted to try out every possible ordering,
how many different orders would there be? It turns out the answer is a surprisingly large number, 720. Do
you know where this number comes from? The value 720 is the factorial of 6.

In mathematics, factorial is often denoted with an exclamation (“!”). The factorial of a whole number n
is defined as n! � n

�
n � 1 � �

n � 2 � � � �

�
1 � . This happens to be the number of distinct arrangements for n items.

Given six items, we compute 6! �
�
6 � �

5 � �
4 � �

3 � �
2 � �

1 � � 720 possible arrangements.

3.3. ACCUMULATING RESULTS: FACTORIAL 29

Python Mathematics English
pi π An approximation of pi.
e e An approximation of e.
sin(x) sinx The sine of x.
cos(x) cosx The cosine of x.
tan(x) tanx The tangent of x.
asin(x) arcsinx The inverse of sine x.
acos(x) arccosx The inverse of cosine x.
atan(x) arctanx The inverse of tangent x.
log(x) lnx The natural (base e) logarithm of x
log10(x) log10 x The common (base 10) logarithm of x.
exp(x) ex The exponential of x.
ceil(x) � x � The smallest whole number � � x
floor(x) � x � The largest whole number � � x

Table 3.2: Some math library functions.

Let’s write a program that will compute the factorial of a number entered by the user. The basic outline
of our program follows an Input-Process-Output pattern.

Input number to take factorial of, n
Compute factorial of n, fact
Output fact

Obviously, the tricky part here is in the second step.
How do we actually compute the factorial? Let’s try one by hand to get an idea for the process. In

computing the factorial of 6, we first multiply 6 � 5 � 30. Then we take that result and do another multipli-
cation 30 � 4 � 120. This result is multiplied by three 120 � 3 � 360. Finally, this result is multiplied by 2
360 � 2 � 720. According to the definition, we then multiply this result by 1, but that won’t change the final
value of 720.

Now let’s try to think about the algorithm more generally. What is actually going on here? We are doing
repeated multiplications, and as we go along, we keep track of the running product. This is a very common
algorithmic pattern called an accumulator. We build up, or accumulate, a final value piece by piece. To
accomplish this in a program, we will use an accumulator variable and a loop structure. The general pattern
looks like this.

Initialize the accumulator variable
Loop until final result is reached

update the value of accumulator variable

Realizing this is the pattern that solves the factorial problem, we just need to fill in the details. We will
be accumulating the factorial. Let’s keep it in a variable called fact. Each time through the loop, we need
to multiply fact by one of the factors n � �

n � 1 ��� � � ��� 1. It looks like we should use a for loop that iterates
over this sequence of factors. For example, to compute the factorial of 6, we need a loop that works like this.

fact = 1
for factor in [6,5,4,3,2,1]:

fact = fact * factor

Take a minute to trace through the execution of this loop and convince yourself that it works. When the
loop body first executes, fact has the value 1 and factor is 6. So, the new value of fact is 1 � 6 � 6.
The next time through the loop, factor will be 5, and fact is updated to 6 � 5 � 30. The pattern continues
for each successive factor until the final result of 720 has been accumulated.

The initial assignment of 1 to fact before the loop is essential to get the loop started. Each time
through the loop body (including the first), the current value of fact is used to compute the next value. The

30 CHAPTER 3. COMPUTING WITH NUMBERS

initialization ensures that fact has a value on the very first iteration. Whenever you use the accumulator
pattern, make sure you include the proper initialization. Forgetting it is a common mistake of beginning
programmers.

Of course, there are many other ways we could have written this loop. As you know from math class,
multiplication is commutative and associative, so it really doesn’t matter what order we do the multiplications
in. We could just as easily go the other direction. You might also notice that including 1 in the list of factors
is unnecessary, since multiplication by 1 does not change the result. Here is another version that computes
the same result.

fact = 1
for factor in [2,3,4,5,6]:

fact = fact * factor

Unfortunately, neither of these loops solves the original problem. We have hand-coded the list of factors
to compute the factorial of six. What we really want is a program that can compute the factorial of any given
input n. We need some way to generate an appropriate list from the value of n.

Luckily, this is quite easy to do using the Python range function. Recall that range(n) produces a list
of numbers starting with 0 and continuing up to, but not including, n. There are other variations of range that
can be used to produce different sequences. With two parameters, range(start,n) produces a sequence
that starts with the value start and continues up to, but not including, n. A third version range(start,
n, step) is like the two parameter version, except that it uses step as the increment between numbers.
Here are some examples.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(5,10)
[5, 6, 7, 8, 9]

>>> range(5, 10, 3)
[5, 8]

Given our input value n we have a couple of different range commands that produce an appropriate list
of factors for computing the factorial of n. To generate them from smallest to largest (a la our second loop),
we could use range(2,n+1). Notice how I used n+1 as the second parameter, since the range will go up
to, but not including this value. We need the +1 to make sure that n itself is included as the last factor.

Another possibility is to generate the factors in the other direction (a la our first loop) using the three-
parameter version of range and a negative step to cause the counting to go backwards: range(n,1,-1).
This one produces a list starting with n and counting down (step -1) to, but not including 1.

Here then is one possible version of the factorial program.

factorial.py
Program to compute the factorial of a number
Illustrates for loop with an accumulator

def main():
n = input("Please enter a whole number: ")
fact = 1
for factor in range(n,1,-1):

fact = fact * factor
print "The factorial of", n, "is", fact

main()

Of course there are numerous other ways this program could have been written. I have already mentioned
changing the order of factors. Another possibility is to initialize fact to n and then use factors starting at
n � 1 (as long as n � 0). You might try out some of these variations and see which you like best.

3.4. THE LIMITS OF INT 31

3.4 The Limits of Int

So far, I have talked about numeric data types as representations of familiar numbers such as integers and
decimal fractions. It is important to keep in mind, however, that these numeric types are just representations,
and they do not always behave exactly like the numbers that they represent. We can see an example of this as
we test out our new factorial program.

>>> import factorial
Please enter a whole number: 6
The factorial of 6 is 720

>>> factorial.main()
Please enter a whole number: 10
The factorial of 10 is 3628800

>>> factorial.main()
Please enter a whole number: 13
Traceback (innermost last):

File "<stdin>", line 1, in ?
File "factorial.py", line 9, in main
fact = fact * factor

OverflowError: integer multiplication

Everything seems fine until we try to compute the factorial of 13. When computing 13! the program prints
out an OverflowError message. What is going on here?

The problem is that this program is representing whole numbers using Python’s int data type. Unfortu-
nately, ints are not exactly like mathematical integers. There are infinitely many integers, but only a finite
range of ints. Inside the computer, ints are stored in a fixed-sized binary representation. To make sense of
this, we need to look at what’s going on at the hardware level.

Computer memory is composed of electrical “switches,” each of which can be in one of two possible
states, basically on or off. Each switch represents a binary digit or bit of information. One bit can encode two
possibilities, usually represented with the numerals 0 (for off) and 1 (for on). A sequence of bits can be used
to represent more possibilities. With two bits, we can represent four things.

bit 2 bit 1

0 0
0 1
1 0
1 1

Three bits allow us to represent eight different values by adding a zero or one to each of the four two-bit
patterns.

bit 3 bit 2 bit 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

You can see the pattern here. Each extra bit doubles the number of distinct patterns. In general, n bits can
represent 2n different values.

The number of bits that a particular computer uses to represent an int depends on the design of the CPU.
Typical PCs today use 32 bits. That means there are 232 possible values. These values are centered at 0 to

32 CHAPTER 3. COMPUTING WITH NUMBERS

represent a range of positive and negative integers. Now 232

2 � 231. So, the range of integers that can be
represented in a 32 bit int value is � 231

� � � 231 � 1. The reason for the � 1 on the high end is to account for
the representation of 0 in the top half of the range.

Let’s try out some expressions in Python to test this analysis. Remember that ** is the Python exponen-
tiation operator.

>>> 2 ** 30
1073741824

>>> 2 ** 31
Traceback (innermost last):

File "<stdin>", line 1, in ?
OverflowError: integer pow()

Python can calculate 230, but “blows up” trying to compute 231. You can see that the overflow happens
somewhere between the 30th and 31st power of two. That is consistent with our analysis that the largest int
is 231 � 1.

Suppose we try to display the largest int.

>>> 2 ** 31 - 1
Traceback (innermost last):

File "<stdin>", line 1, in ?
OverflowError: integer pow()

Our first try didn’t work. Can you see why? Python evaluates this expression by first trying to calculate 2
** 31. That calculation produces the error before Python has a chance to subtract one.

We need to be a little cleverer and sneak up on the value from underneath. We can use the fact that
231 � 230 � 230. Strategically subtracting one from each side gives us 231 � 1 � 230 � 1 � 230. By subtracting
one in the middle of the computation, we can ensure that the intermediate value never gets bigger than the
final result. Here’s what Python says:

>>> 2 ** 30 - 1 + 2 ** 30
2147483647

By the way, this expression illustrates another way that Python ints differ from the integers that they
represent. In normal arithmetic, there is no difference between 231 � 1 and 230 � 1 � 230. They both represent
the same value. In computer arithmetic, however, one is computable and the other is not! Representations of
numbers do not always obey all the properties that we take for granted with numbers.

Now that we have a numeric value, we can directly test our conjecture that this is the largest int.

>>> 2147483647
2147483647

>>> 2147483648
OverflowError: integer literal too large

There you have it. The largest int that can be represented in 32 bits is 2 � 147 � 483 � 647.
Now you know exactly why our program for factorial can’t compute 13!. This value is larger than the

limit of 2 � 147 � 483 � 647. Naturally, the next step is to figure out a way around this limitation.

3.5 Handling Large Numbers: Long Ints

As long as our factorial program relies on the int data type, we will not be able to find the factorial of larger
numbers. We need to use another numeric type. You might first think of using a float instead. This does not
really solve our problem. Here is an example run of a modified factorial program that initializes fact to the
float 1 � 0.

3.5. HANDLING LARGE NUMBERS: LONG INTS 33

Please enter a whole number. 15
The factorial of 15 is 1.307674368e+12

We do not get an overflow error, but we also do not get an exact answer.
A very large (or very small) floating point value is printed out using exponential, or scientific, notation.

The e+12 at the end means that the result is equal to 1 � 307674368 � 1012. You can think of the +12 at the
end as a marker that shows where the decimal point should be placed. In this case, it must move 12 places to
the right to get the actual value. However, there are only 9 digits to the right of the decimal, so we have “lost”
the last three digits.

Remember, floats are approximations. Using a float allows us to represent a much larger range of values,
but the amount of precision is still fixed. In fact, a computer stores floating point numbers as a pair of fixed-
length (binary) integers. One integer represents the string of digits in the value, and the second represents the
exponent value that keeps track of where the whole part ends and the fractional part begins.

Fortunately, Python provides a better solution for large, exact values in the form of a third numeric type
long int. A long int is not a fixed size, but expands to accommodate whatever value it holds. The only limit is
the amount of memory the computer has available to it. To get a long int, you put an “L” suffix on a numeric
literal. So, the literal 5 is an int representation of the number five, but 5L is a long int representation of the
number five. Of course, for a number this small, there is no reason to use a long int. However, using a long
int causes Python to use long int operations, and our value can grow to any size. Here are some examples that
illustrate:

>>> 2L
2L
>>> 2L ** 31
2147483648L
>>> type(100L)
<type ’long int’>
>>> 10000000000000000000000000000000000000L + 25
10000000000000000000000000000000000025L

Notice how calculations involving a long int produce a long int result. Using long ints allows us to compute
with really large numbers.

We can modify our factorial program to use long int by simply initializing fact to 1L. Since we start
with a long int, each successive multiplication will produce another long int.

factorial2.py

def main():
n = input("Please enter a whole number: ")
fact = 1L # Use a long int here
for factor in range(n,0,-1):

fact = fact * factor
print "The factorial of", n, "is", fact

Now we can take the factorial of arbitrarily large inputs.

>>> import factorial2
Please enter a whole number: 13
The factorial of 13 is 6227020800

>>> factorial2.main()
Please enter a whole number: 100
The factorial of 100 is 933262154439441526816992388562667004907159682
643816214685929638952175999932299156089414639761565182862536979208272
23758251185210916864000000000000000000000000

34 CHAPTER 3. COMPUTING WITH NUMBERS

If you have an older version of Python (prior to version 2.0), these answers will be printed with an “L”
appended. This is Python’s way of saying that the number is a long int. In newer versions, this artifact is
automatically removed by the print statement. In the next chapter, you will learn how you could take care
of getting the “L” out yourself.

Now we have a factorial program that can compute interestingly large results. Long ints are pretty cool;
you might be tempted to use them all the time. The down-side of using long ints is that these representations
are less efficient than the plain int data type. The operations needed to do arithmetic on ints is built into the
CPU of the computer. When doing operations on long ints, Python has to employ algorithms that simulate
long arithmetic using the computer’s built-in fixed-length operations. As a result, long int arithmetic is much
slower than int arithmetic. Unless you need very large values, ints are preferred.

3.6 Type Conversions

Sometimes values of one data type need to be converted into another. You have seen that combining an int
with an int produces an int, and combining a float with a float creates another float. But what happens if
we write an expression that mixes an int with a float? For example, what should the value of x be after this
assignment statement?

x = 5.0 / 2

If this is floating point division, then the result should be the float value 2 � 5. If integer division is performed,
the result is 2. Before reading ahead for the answer, take a minute to consider how you think Python should
handle this situation.

In order to make sense of the expression 5.0 / 2, Python must either change 5.0 to 5 and perform
integer division or convert 2 to 2.0 and perform floating point division. In general, converting a float to an
int is a dangerous step, because some information (the fractional part) will be lost. On the other hand, an int
can be safely turned into a float just by adding a fractional part of � 0. So, in mixed-typed expressions, Python
will automatically convert ints to floats and perform floating point operations to produce a float result.

Sometimes we may want to perform a type conversion ourselves. This is called an explicit type conver-
sion. For example, suppose we are writing a program that finds the average of some numbers. Our program
would first sum up the numbers and then divide by n, the count of how many numbers there are. The line of
code to compute the average might look like this.

average = sum / n

Unfortunately, this line may not always produce the result we intend.
Consider a specific example. The numbers to be averaged are the ints 4, 5, 6, 7. The sum variable

will hold 22, also an int, and dividing by 4 gives the answer 5, not 5.5. Remember, an int divided by an int
always produces an int.

To solve this problem, we need to tell Python to convert one of the operands to a floating point value.

average = float(sum) / n

The float() function converts an int into a float. We only need to convert the numerator, because this
produces a mixed-type expression, and Python will automatically convert the denominator.

Notice that putting the float() around the entire expression would not work.

average = float(sum/n)

In this form, sum and n could both be ints causing Python to perform an integer division and then convert
the resulting quotient to a float. Of course, this float would always end in � 0, since it is being converted from
an int. That is not what we want.

Python also provides int() and long() functions that can be used to convert numbers into ints and
longs, respectively. Here are a few examples.

3.7. EXERCISES 35

>>> int(4.5)
4
>>> int(3.9)
3
>>> long(3.9)
3L
>>> float(int(3.3))
3.0
>>> int(float(3.3))
3
>>> int(float(3))
3

As you can see, converting to an int or long int simply discards the fractional part of a float; the value is
truncated, not rounded. If you want a rounded result, you can add 0.5 to the value before using int(),
assuming the value is positive.

A more general way of rounding off numbers is to use the built-in round function which rounds a float
off to the nearest whole value.

>>> round(3.14)
3.0
>>> round(-3.14)
-3.0
>>> round(3.5)
4.0
>>> round(-3.5)
-4.0
>>> int(round(-3.14))
-3

Notice that round returns a float. The last example shows how the result can then be turned into an int value,
if necessary, by using int().

3.7 Exercises

1. Show the result of evaluating each expression. Be sure that the value is in the proper form to indicate
its type (int, long int, or float). If the expression is illegal, explain why.

(a) 4.0 / 10.0 + 3.5 * 2

(b) 10 % 4 + 6 / 2

(c) abs(4 - 20 / 3) ** 3

(d) sqrt(4.5 - 5.0) + 7 * 3

(e) 3 * 10 / 3 + 10 % 3

(f) 3L ** 3

2. Translate each of the following mathematical expressions into an equivalent Python expression. You
may assume that the math library has been imported (via import math).

(a)
�
3 � 4 � � 5

(b) n � n � 1 �
2

(c) 4πr2

(d) � r
�
cosa � 2 � r

�
sina � 2

(e) y2 � y1
x2 � x1

36 CHAPTER 3. COMPUTING WITH NUMBERS

3. Show the list of numbers that would be generated by each of the following range expressions.

(a) range(5)

(b) range(3, 10)

(c) range(4, 13, 3)

(d) range(15, 5, -2)

(e) range(5, 3)

4. Show the output that would be generated by each of the following program fragments.

(a) for i in range(1, 11):
print i*i

(b) for i in [1,3,5,7,9]:
print i, ":", i**3

print i

(c) x = 2
y = 10
for j in range(0, y, x):

print j,
print x + y

print "done"

(d) ans = 0
for i in range(1, 11):

ans = ans + i*i
print i

print ans

5. Write a program to calculate the volume and surface area of a sphere from its radius, given as input.
Here are some formulas that might be useful: V � 4

�
3πr3 A � 4πr2

6. Write a program that calculates the cost per square inch of a circular pizza, given its diameter and price.
A � πr2

7. Write a program that determines the molecular weight of a hydrocarbon based on the number of hy-
drogen, carbon, and oxygen atoms. You should use the following weights:

Atom Weight
(grams / mole)

H 1.0079
C 12.011
O 15.9994

8. Write a program that determines the distance to a lighting strike based on the time elapsed between the
flash and the sound of thunder. The speed of sound is approximately 1100 ft/sec and 1 mile is 5280 ft.

9. The Konditorei coffee shop sells coffee at $10.50 a pound plus the cost of shipping. Each order ships
for $0.86 per pound + $1.50 fixed cost for overhead. Write a program that calculates the cost of an
order.

10. Two points in a plane are specified using the coordinates (x1,y1) and (x2,y2). Write a program that
calculates the slope of a line through two (non-vertical) points entered by the user. m � y2 � y1

x2 � x1

11. Write a program that accepts two points (see previous problem) and determines the distance between
them. d � � �

x2 � x1 � 2 �
�
y2 � y1 � 2

3.7. EXERCISES 37

12. The Gregorian Epact is the number of days between Jan. 1st and the previous 1st quarter moon phase.
This value is used to figure out the date of Easter. It is calculated by these formulas (using int arith-
metic): C � year

�
100 epact �

�
8 �

�
C

�
4 � � C �

� �
8C � 13 � �

25 � � 11
�
year%19 � � %30 Write a program

that prompts the user for a 4-digit year and then outputs the value of the epact.

13. Write a program to calculate the area of a triangle given the length of its three sides a, b, and c.
s � a

�
b

�
c

2 A � � s
�
s � a � �

s � b � �
s � c �

14. Write a program to determine the length of a ladder required to reach a given height when leaned
against a house. The height and angle of the ladder are given as inputs. len � height

sinangle

15. Write a program to find the sum of the first n natural numbers, where the value of n is provided by the
user.

16. Write a program to find the sum of the squares for the first n natural numbers.

17. Write a program to sum a series of numbers entered by the user. The program should first prompt the
user for how many numbers are to be summed. It should then input each of the numbers and print a
total sum.

18. Write a program that finds the average of a series of numbers entered by the user. As in the previous
problem, the program will first ask the user how many numbers there are. Note: the average should
always be a float, even if the user inputs are all ints.

19. Write a program that approximates the value of π by summing the terms of this series: 4
�
1 � 4

�
3 �

4
�
5 � 4

�
7 � 4

�
9 � 4

�
11 � � � � The program should prompt the user for n, the number of terms to sum

and then output the sum of the first n terms of this series.

20. A Fibonacci sequence is a sequence of numbers where each successive number is the sum of the
previous two. The classic Fibonacci sequence begins: 1, 1, 2, 3, 5, 8, 13, � � � . Write a program that
computes the nth Fibonacci number where n is a value input by the user. For example, if n = 6, then the
result is 8. Note: Fibonacci numbers grow very rapidly; your program should be able to handle very
large numbers.

21. You have seen that the math library contains a function that computes the square root of numbers. In
this exercise, you are to write your own algorithm for computing square roots. One way to solve this
problem is to use a guess-and-check approach. You first guess what the square root might be and then
see how close your guess is. You can use this information to make another guess and continue guessing
until you have found the square root (or a close approximation to it). One particularly good way of
making guesses is to use Newton’s method. Suppose x is the number we want the root of, and guess

is the current guessed answer. The guess can be improved by using
guess

� x
guess

2 as the next guess.

Write a program that implements Newton’s method. The program should prompt the user for the value
to find the square root of (x) and the number of times to improve the guess. Starting with a guess value
of x/2, your program should loop the specified number of times applying Newton’s method and report
the final value of guess. You might also print out the value of math.sqrt(x) for comparison.

38 CHAPTER 3. COMPUTING WITH NUMBERS

Chapter 4

Computing with Strings

So far, we have been discussing programs designed to manipulate numbers. These days we know that com-
puters are also useful for working with other kinds of data. In fact, the most common use for most personal
computers is word processing. The data in this case is text. Text is represented in programs by the string data
type, which is the subject of this chapter.

4.1 The String Data Type

A string is a sequence of characters. In Chapter 2 you learned that a string literal is a sequence of characters in
quotations. Python also allows strings to be delimited by single quotes (apostrophes). There’s no difference—
just be sure to use a matching set. Strings can be stored in variables, just like numbers. Here are some
examples illustrating these two forms of string literals.

>>> str1 = "Hello"
>>> str2 = ’spam’
>>> print str1, str2
Hello spam
>>> type(str1)
<type ’string’>
>>> type(str2)
<type ’string’>

You already know how to print strings. Some programs also need to get string input from the user (e.g.,
a name). Getting string-valued input requires a bit of care. Remember that the input statement treats
whatever the user types as an expression to be evaluated. Consider the following interaction.

>>> firstName = input("Please enter your name: ")
Please enter your name: John
Traceback (innermost last):

File "<pyshell#8>", line 1, in ?
firstName = input("Please enter your name: ")

File "<string>", line 0, in ?
NameError: John

Something has gone wrong here. Can you see what the problem is?
Remember, an input statement is just a delayed expression. When I entered the name, “John”, this had

the exact same effect as executing this assignment statement:

firstName = John

This statement says, “look up the value of the variable John and store that value in firstName.” Since
Johnwas never given a value, Python cannot find any variable with that name and responds with a NameError.

One way to fix this problem is to type quotes around a string input so that it evaluates as a string literal.

39

40 CHAPTER 4. COMPUTING WITH STRINGS

>>> firstName = input("Please enter your name: ")
Please enter your name: "John"
>>> print "Hello", firstName
Hello John

This works, but it is not a very satisfactory solution. We shouldn’t have to burden the users of our programs
with details like typing quotes around their names.

Python provides a better mechanism. The raw input function is exactly like input except it does not
evaluate the expression that the user types. The input is simply handed to the program as a string of text.
Revisiting our example, here is how it looks with raw input:

>>> firstName = raw_input("Please enter your name: ")
Please enter your name: John
>>> print "Hello", firstName
Hello John

Notice that this example works as expected without having to type quotes around the input. If you want to
get textual input from the user, raw input is the way to do it.

So far, we have seen how to get strings as input, assign them to variables and print them out. That’s
enough to write a parrot program, but not to do any serious text-based computing. For that, we need some
string operations. The rest of this section takes you on a tour of the more important Python string operations.
In the following section, we’ll put these ideas to work in some example programs.

While the idea of numeric operations may be old hat to you from your math studies, you may not have
thought about string operations before. What kinds of things can we do with strings?

For starters, remember what a string is: a sequence of characters. One thing we might want to do is
access the individual characters that make up the string. In Python, this can be done through the operation of
indexing. We can think of the positions in a string as being numbered, starting from the left with 0. Figure 4.1

H l l o B o be

0 2 3 5 71 4 6 8

Figure 4.1: Indexing of the string ”Hello Bob”

illustrates with the string “Hello Bob.” Indexing is used in string expressions to access a specific character
position in the string. The general form for indexing is <string>[<expr>]. The value of the expression
determines which character is selected from the string.

Here are some interactive indexing examples:

>>> greet = "Hello Bob"
>>> greet[0]
’H’
>>> print greet[0], greet[2], greet[4]
H l o
>>> x = 8
>>> print greet[x-2]
B

Notice that, in a string of n characters, the last character is at position n � 1, because the indexes start at 0.
Indexing returns a string containing a single character from a larger string. It is also possible to access

a contiguous sequence of characters or substring from a string. In Python, this is accomplished through an
operation called slicing. You can think of slicing as a way of indexing a range of positions in the string.
Slicing takes the form � string � [� start � : � end �]. Both start and end should be int-valued
expressions. A slice produces the substring starting at the position given by start and running up to, but
not including, position end.

Continuing with our interactive example, here are some slices.

4.2. SIMPLE STRING PROCESSING 41

>>> greet[0:3]
’Hel’
>>> greet[5:9]
’ Bob’
>>> greet[:5]
’Hello’
>>> greet[5:]
’ Bob’
>>> greet[:]
’Hello Bob’

The last three examples show that if either expression is missing, the start and end of the string are the
assumed defaults. The final expression actually hands back the entire string.

Indexing and slicing are useful operations for chopping strings into smaller pieces. The string data type
also supports operations for putting strings together. Two handy operators are concatenation (+) and repetition
(*). Concatenation builds a string by “gluing” two strings together. Repetition builds a string by multiple
concatenations of a string with itself. Another useful function is len, which tells how many characters are
in a string. Here are some examples:

>>> "spam" + "eggs"
’spameggs’
>>> "Spam" + "And" + "Eggs"
’SpamAndEggs’
>>> 3 * "spam"
’spamspamspam’
>>> "spam" * 5
’spamspamspamspamspam’
>>> (3 * "spam") + ("eggs" * 5)
’spamspamspameggseggseggseggseggs’
>>> len("spam")
4
>>> len("SpamAndEggs")
11
>>>

These basic string operations are summarized in Table 4.1.

Operator Meaning

+ Concatenation
* Repetition

� string � [] Indexing
len(� string �) length

� string � [:] slicing

Table 4.1: Python string operations

4.2 Simple String Processing

Now that you have an idea what string operations can do, we’re ready to write some programs. Our first
example is a program to compute the usernames for a computer system.

Many computer systems use a username and password combination to authenticate system users. The
system administrator must assign a unique username to each user. Often, usernames are derived from the
user’s actual name. One scheme for generating usernames is to use the user’s first initial followed by up

42 CHAPTER 4. COMPUTING WITH STRINGS

to seven letters of the user’s last name. Using this method, the username for Elmer Thudpucker would be
“ethudpuc,” and John Smith would just be “jsmith.”

We want to write a program that reads a person’s name and computes the corresponding username. Our
program will follow the basic input-process-output pattern. The result is simple enough that we can skip the
algorithm development and jump right to the code. The outline of the algorithm is included as comments in
the final program.

username.py
Simple string processing program to generate usernames.

def main():
print "This program generates computer usernames."
print

get user’s first and last names
first = raw_input("Please enter your first name (all lowercase): ")
last = raw_input("Please enter your last name (all lowercase): ")

concatenate first initial with 7 chars of the last name.
uname = first[0] + last[:7]

output the username
print "Your username is:", uname

main()

This program first uses raw input to get strings from the user. Then indexing, slicing, and concatenation
are combined to produce the username.

Here’s an example run.

This program generates computer usernames.

Please enter your first name (all lowercase): elmer
Please enter your last name (all lowercase): thudpucker
Your username is: ethudpuc

As you can see, computing with strings is very similar to computing with numbers.
Here is another problem that we can solve with string operations. Suppose we want to print the abbrevia-

tion of the month that corresponds to a given month number. The input to the program is an int that represents
a month number (1–12), and the output is the abbreviation for the corresponding month. For example, if the
input is 3, then the output should be Mar, for March.

At first, it might seem that this program is beyond your current ability. Experienced programmers recog-
nize that this is a decision problem. That is, we have to decide which of 12 different outputs is appropriate,
based on the number given by the user. We will not cover decision structures until later; however, we can
write the program now by some clever use of string slicing.

The basic idea is to store all the month names in a big string.

months = "JanFebMarAprMayJunJulAugSepOctNovDec"

We can lookup a particular month by slicing out the appropriate substring. The trick is computing where to
slice. Since each month is represented by three letters, if we knew where a given month started in the string,
we could easily extract the abbreviation.

monthAbbrev = months[pos:pos+3]

This would get us the substring of length three that starts in the position indicated by pos.
How do we compute this position? Let’s try a few examples and see what we find. Remember that string

indexing starts at 0.

4.3. STRINGS AND SECRET CODES 43

month number position
Jan 1 0
Feb 2 3
Mar 3 6
Apr 4 9

Of course, the positions all turn out to be multiples of 3. To get the correct multiple, we just subtract 1
from the month number and then multiply by 3. So for 1 we get

�
1 � 1 � � 3 � 0 � 3 � 0 and for 12 we have�

12 � 1 � � 3 � 11 � 3 � 33
Now we’re ready to code the program. Again, the final result is short and sweet; the comments document

the algorithm we’ve developed.

month.py
A program to print the abbreviation of a month, given its number

def main():
months is used as a lookup table
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

n = input("Enter a month number (1-12): ")

compute starting position of month n in months
pos = (n-1) * 3

Grab the appropriate slice from months
monthAbbrev = months[pos:pos+3]

print the result
print "The month abbreviation is", monthAbbrev + "."

main()

Notice the last line of this program uses string concatenation to put a period at the end of the month abbrevi-
ation.

Here is a sample of program output.

Enter a month number (1-12): 4
The month abbreviation is Apr.

4.3 Strings and Secret Codes

4.3.1 String Representation

Hopefully, you are starting to get the hang of computing with textual (string) data. However, you might still
be wondering how computers actually manipulate strings. In the previous chapter, you saw how computers
store numbers in binary notation (sequences of zeros and ones); the computer CPU contains circuitry to do
arithmetic with these representations. Textual information is represented in exactly the same way. Under-
neath, when the computer is manipulating text, it is really no different from number crunching.

To understand this, you might think in terms of messages and secret codes. Consider the age-old grade
school dilemma. You are sitting in class and want to pass a note to a friend across the room. Unfortunately,
the note must pass through the hands, and in front of the curious eyes, of many classmates before it reaches
its final destination. And, of course, there is always the risk that the note could fall into enemy hands (the
teacher’s). So you and your friend need to design a scheme for encoding the contents of your message.

One approach is to simply turn the message into a sequence of numbers. You could choose a number
to correspond to each letter of the alphabet and use the numbers in place of letters. Without too much

44 CHAPTER 4. COMPUTING WITH STRINGS

imagination, you might use the numbers 1-26 to represent the letters a–z. Instead of the word “sourpuss,” you
would write “18, 14, 20, 17, 15, 20, 18, 18.” To those who don’t know the code, this looks like a meaningless
string of numbers. For you and your friend, however, it represents a word.

This is how a computer represents strings. Each character is translated into a number, and the entire
string is stored as a sequence of (binary) numbers in computer memory. It doesn’t really matter what number
is used to represent any given character as long as the computer is consistent about the encoding/decoding
process. In the early days of computing, different designers and manufacturers used different encodings. You
can imagine what a headache this was for people transferring data between different systems.

Consider the situation that would result if, say, PCs and MacIntosh computers each used their own en-
coding. If you type a term paper on a PC and save it as a text file, the characters in your paper are represented
as a certain sequence of numbers. Then if the file was read into your instructor’s MacIntosh computer, the
numbers would be displayed on the screen as different characters from the ones you typed. The result would
look like gibberish!

To avoid this sort of problem, computer systems today use industry standard encodings. One important
standard is called ASCII (American Standard Code for Information Interchange). ASCII uses the numbers
0 through 127 to represent the characters typically found on an (American) computer keyboard, as well
as certain special values known as control codes that are used to coordinate the sending and receiving of
information. For example, the capital letters A–Z are represented by the values 65–90, and the lowercase
versions have codes 97–122.

One problem with the ASCII encoding, as its name implies, is that it is American-centric. It does not have
symbols that are needed in many other languages. Extended ASCII encodings have been developed by the
International Standards Organization to remedy this situation. Most modern systems are moving to support
of UniCode a much larger standard that includes support for the characters of all written languages. Newer
versions of Python include support for UniCode as well as ASCII.

Python provides a couple built-in functions that allow us to switch back and forth between characters and
the numeric values used to represent them in strings. The ord function returns the numeric (“ordinal”) code
of a single-character string, while chr goes the other direction. Here are some interactive examples:

>>> ord("a")
97
>>> ord("A")
65
>>> chr(97)
’a’
>>> chr(90)
’Z’

4.3.2 Programming an Encoder

Let’s return to the note-passing example. Using the Python ord and chr functions, we can write some
simple programs that automate the process of turning messages into strings of numbers and back again. The
algorithm for encoding the message is simple.

get the message to encode
for each character in the message:

print the letter number of the character

Getting the message from the user is easy, a raw input will take care of that for us.

message = raw_input("Please enter the message to encode: ")

Implementing the loop requires a bit more effort. We need to do something for each character of the message.
Recall that a for loop iterates over a sequence of objects. Since a string is a kind of sequence, we can just
use a for loop to run-through all the characters of the message.

for ch in message:

4.3. STRINGS AND SECRET CODES 45

Finally, we need to convert each character to a number. The simplest approach is to use the ASCII number
(provided by ord) for each character in the message.

Here is the final program for encoding the message:

text2numbers.py
A program to convert a textual message into a sequence of
numbers, utlilizing the underlying ASCII encoding.

def main():
print "This program converts a textual message into a sequence"
print "of numbers representing the ASCII encoding of the message."
print

Get the message to encode
message = raw_input("Please enter the message to encode: ")

print
print "Here are the ASCII codes:"

Loop through the message and print out the ASCII values
for ch in message:

print ord(ch), # use comma to print all on one line.

print

main()

We can use the program to encode important messages.

This program converts a textual message into a sequence
of numbers representing the ASCII encoding of the message.

Please enter the message to encode: What a Sourpuss!

Here are the ASCII codes:
87 104 97 116 32 97 32 83 111 117 114 112 117 115 115 33

One thing to notice about this result is that even the space character has a corresponding ASCII code. It is
represented by the value 32.

4.3.3 Programming a Decoder

Now that we have a program to turn a message into a sequence of numbers, it would be nice if our friend
on the other end had a similar program to turn the numbers back into a readable message. Let’s solve that
problem next. Our decoder program will prompt the user for a sequence of numbers representing ASCII
codes and then print out the text message corresponding to those codes. This program presents us with a
couple of challenges; we’ll address these as we go along.

The overall outline of the decoder program looks very similar to the encoder program. One change in
structure is that the decoding version will collect the characters of the message in a string and print out the
entire message at the end of the program. To do this, we need to use an accumulator variable, a pattern we
saw in the factorial program from the previous chapter. Here is the decoding algorithm:

get the sequence of numbers to decode
message = ""
for each number in the input:

convert the number to the appropriate character

46 CHAPTER 4. COMPUTING WITH STRINGS

add the character to the end of message
print the message

Before the loop, the accumulator variable message is initialized to be an empty string, that is a string
that contains no characters (""). Each time through the loop a number from the input is converted into an
appropriate character and appended to the end of the message constructed so far.

The algorithm seems simple enough, but even the first step presents us with a problem. How exactly do
we get the sequence of numbers to decode? We don’t even know how many numbers there will be. To solve
this problem, we are going to rely on some more string manipulation operations.

First, we will read the entire sequence of numbers as a single string using raw input. Then we will
split the big string into a sequence of smaller strings, each of which represents one of the numbers. Finally,
we can iterate through the list of smaller strings, convert each into a number, and use that number to produce
the corresponding ASCII character. Here is the complete algorithm:

get the sequence of numbers as a string, inString
split inString into a sequence of smaller strings
message = ""
for each of the smaller strings:

change the string of digits into the number it represents
append the ASCII character for that number to message

print message

This looks complicated, but Python provides some functions that do just what we need.
We saw in Chapter 3 that Python provides a standard math library containing useful functions for com-

puting with numbers. Similarly, the string library contains many functions that are useful in string-
manipulation programs.

For our decoder, we will make use of the split function. This function is used to split a string into a
sequence of substrings. By default, it will split the string wherever a space occurs. Here’s an example:

>>> import string
>>> string.split("Hello string library!")
[’Hello’, ’string’, ’library!’]

You can see how split has turned the original string "Hello string library!" into a list of three
strings: "Hello", "string" and "library!".

By the way, the split function can be used to split a string at places other than spaces by supplying
the character to split on as a second parameter. For example, if we have a string of numbers separated by
commas, we could split on the commas.

>>> string.split("32,24,25,57", ",")
[’32’, ’24’, ’25’, ’57’]

Since our decoder program should accept the same format that was produced by the encoder program,
namely a sequence of numbers with spaces between, the default version of split works nicely.

>>> string.split("87 104 97 116 32 97 32 83 111 117 114 112 117 115 115 33")
[’87’, ’104’, ’97’, ’116’, ’32’, ’97’, ’32’, ’83’, ’111’, ’117’,
’114’, ’112’, ’117’, ’115’, ’115’, ’33’]

Notice that the resulting list is not a sequence of numbers, it is a sequence of strings. It just so happens these
strings contain only digits and could be interpreted as numbers.

All that we need now is a way of converting a string containing digits into a Python number. One way to
accomplish this is with the Python eval function. This function takes any string and evaluates it as if it were
a Python expression. Here are some interactive examples of eval:

>>> numStr = "500"
>>> eval(numStr)
500

4.3. STRINGS AND SECRET CODES 47

>>> eval("345.67")
345.67
>>> eval("3+4")
7
>>> x = 3.5
>>> y = 4.7
>>> eval("x * y")
16.45
>>> x = eval(raw_input("Enter a number "))
Enter a number 3.14
>>> print x
3.14

The last pair of statements shows that the eval of a raw input produces exactly what we would expect
from an input expression. Remember, input evaluates what the user types, and eval evaluates whatever
string it is given.

Using split and eval we can write our decoder program.

numbers2text.py
A program to convert a sequence of ASCII numbers into
a string of text.

import string # include string library for the split function.

def main():
print "This program converts a sequence of ASCII numbers into"
print "the string of text that it represents."
print

Get the message to encode
inString = raw_input("Please enter the ASCII-encoded message: ")

Loop through each substring and build ASCII message
message = ""
for numStr in string.split(inString):

asciiNum = eval(numStr) # convert digit string to a number
message = message + chr(asciiNum) # append character to message

print "The decoded message is:", message

main()

Study this program a bit, and you should be able to understand exactly how it accomplishes its task. The
heart of the program is the loop.

for numStr in string.split(inString):
asciiNum = eval(numStr)
message = message + chr(asciiNum)

The split function produces a sequence of strings, and numStr takes on each successive (sub)string in the
sequence. I called the loop variable numStr to emphasize that its value is a string of digits that represents
some number. Each time through the loop, the next substring is converted to a number by evaling it.
This number is converted to the corresponding ASCII character via chr and appended to the end of the
accumulator, message. When the loop is finished, every number in inString has been processed and
message contains the decoded text.

Here is an example of the program in action:

48 CHAPTER 4. COMPUTING WITH STRINGS

>>> import numbers2text
This program converts a sequence of ASCII numbers into
the string of text that it represents.

Please enter the ASCII-encoded message:
83 116 114 105 110 103 115 32 97 114 101 32 70 117 110 33
The decoded message is: Strings are Fun!

4.3.4 Other String Operations

Now we have a couple programs that can encode and decode messages as sequences of ASCII values. These
programs turned out to be quite simple due to the power both of Python’s string data type and its built-in
operations as well as extensions that can be found in the string library.

Python is a very good language for writing programs that manipulate textual data. Table 4.2 lists some
of the other useful functions of the string library. Note that many of these functions, like split, accept
additional parameters to customize their operation. Python also has a number of other standard libraries for
text-processing that are not covered here. You can consult the online documentation or a Python reference to
find out more.

Function Meaning
capitalize(s) Copy of s with only the first character capitalized
capwords(s) Copy of s with first character of each word capitalized
center(s, width) Center s in a field of given width
count(s, sub) Count the number of occurrences of sub in s
find(s, sub) Find the first position where sub occurs in s
join(list) Concatenate list of strings into one large string
ljust(s, width) Like center, but s is left-justified
lower(s) Copy of s in all lowercase characters
lstrip(s) Copy of s with leading whitespace removed
replace(s,oldsub,newsub) Replace all occurrences of oldsub in s with newsub
rfind(s, sub) Like find, but returns the rightmost position
rjust(s,width) Like center, but s is right-justified
rstrip(s) Copy of s with trailing whitespace removed
split(s) Split s into a list of substrings (see text).
upper(s) Copy of s with all characters converted to upper case

Table 4.2: Some components of the Python string library

4.3.5 From Encoding to Encryption

We have looked at how computers represent strings as a sort of encoding problem. Each character in a string
is represented by a number that is stored in the computer in a binary representation. You should realize that
there is nothing really secret about this code at all. In fact, we are simply using an industry-standard mapping
of characters into numbers. Anyone with a little knowledge of computer science would be able to crack our
code with very little effort.

The process of encoding information for the purpose of keeping it secret or transmitting it privately is
called encryption. The study of encryption methods is an increasingly important subfield of mathematics and
computer science known as cryptography. For example, if you shop over the Internet, it is important that your
personal information such as social security number or credit card number is transmitted using encodings that
keep it safe from potential eavesdroppers on the network.

Our simple encoding/decoding programs use a very weak form of encryption known as a substitution
cipher. Each character of the original message, called the plaintext, is replaced by a corresponding symbol
(in our case a number) from a cipher alphabet. The resulting code is called the ciphertext .

4.4. OUTPUT AS STRING MANIPULATION 49

Even if our cipher were not based on the well-known ASCII encoding, it would still be easy to discover
the original message. Since each letter is always encoded by the same symbol, a code-breaker could use
statistical information about the frequency of various letters and some simple trial and error testing to discover
the original message. Such simple encryption methods may be sufficient for grade-school note passing, but
they are certainly not up to the task of securing communication over global networks.

Modern approaches to encryption start by translating a message into numbers, much like our encoding
program. Then sophisticated mathematical algorithms are employed to transform these numbers into other
numbers. Usually, the transformation is based on combining the message with some other special value called
the key. In order to decrypt the message, the party on the receiving end needs to have the appropriate key so
that the encoding can be reversed to recover the original message.

Encryption approaches come in two flavors: private key and public key. In a private key system the same
key is used for encrypting and decrypting messages. All parties that wish to communicate need to know
the key, but it must be kept secret from the outside world. This is usual system that people think of when
considering secret codes.

In public key systems, there are separate but related keys for encrypting and decrypting. Knowing the
encryption key does not allow you to decrypt messages or discover the decryption key. In a public key
system, the encryption key can be made publicly available, while the decryption key is kept private. Anyone
can safely send a message using the public key for encryption. Only the party holding the decryption key
will be able to decipher it. For example, a secure web site can send your web browser its public key, and the
browser can use it to encode your credit card information before sending it on the Internet. Then only the
company that is requesting the information will be able to decrypt and read it using the proper private key.

4.4 Output as String Manipulation

Even programs that we may not view as primarily doing text-manipulation often need to make use of string
operations. For example, a program to do a financial analysis must produce a nicely formatted report of the
results. Much of this report will be in the form of text that is used to label and explain numbers, charts, tables
and figures. In this section, we’ll look at techniques for generating nicely formatted text-based output.

4.4.1 Converting Numbers to Strings

In the ASCII decoding program, we used the eval function to convert from a string data type into a numeric
data type. Recall that eval evaluates a string as a Python expression. It is very general and can be used to
turn strings into nearly any other Python data type.

It is also possible to go the other direction and turn many Python data types into strings using the str
function. Here are a couple of simple examples.

>>> str(500)
’500’
>>> value = 3.14
>>> str(value)
’3.14’
>>> print "The value is", str(value) + "."
The value is 3.14.

Notice particularly the last example. By turning value into a string, we can use string concatenation to put
a period at the end of a sentence. If we didn’t first turn value into a string, Python would interpret the + as
a numerical operation and produce an error, because “.” is not a number.

Adding eval and str to the type-conversion operations discussed in Chapter 3, we now have a complete
set of operations for converting values among various Python data types. Table 4.3 summarizes these five
Python type conversion functions.

One common reason for converting a number into a string is so that string operations can be used to
control the way the value is printed. For example, in the factorial program from last chapter we saw that
Python long ints have the letter “L” appended to them. In versions of Python prior to 2.0, the “L” showed up

50 CHAPTER 4. COMPUTING WITH STRINGS

Function Meaning
float(<expr>) Convert expr to a floating point value.
int(<expr>) Convert expr to an integer value.
long(<expr> Convert expr to a long integer value.
str(<expr>) Return a string representation of expr.
eval(<string>) Evaluate string as an expression.

Table 4.3: Type Conversion Functions

whenever a long int was printed. However, it is easy to remove this artifact using some straightforward string
manipulation.

factStr = str(fact)
print factStr[0:len(factStr)-1]

Can you see how this code turns the long int into a string and then uses slicing to remove the “L?” The
print statement prints every position in the string up to, but not including, the final “L,” which is in position
length - 1.

As an aside, Python also allows sequences to be indexed from the back by using negative numbers as
indexes. Thus -1 is the last position in a string, -2 is the second to last, etc. Using this convention, we can
slice off the last character without first computing the length of the string.

print str(fact)[:-1]

This version uses str to turn fact into a string and then immediately slices it “in place” from the beginning
(0 is the default start) up to, but not including, the last position.

4.4.2 String Formatting

As you have seen, basic string operations can be used to build nicely formatted output. This technique is
useful for simple formatting, but building up a complex output through slicing and concatenation of smaller
strings can be tedious. Python provides a powerful string formatting operation that makes the job much easier.

Let’s start with a simple example. Here is a run of the change counting program from last chapter.

Change Counter

Please enter the count of each coin type.
How many quarters do you have? 6
How many dimes do you have? 0
How many nickels do you have? 0
How many pennies do you have? 0
The total value of your change is 1.5

Notice that the final value is given as a fraction with only one decimal place. This looks funny, since we
expect the output to be something like $1.50.

We can fix this problem by changing the very last line of the program as follows.

print "The total value of your change is $%0.2f" % (total)

Now the program prints this message:

The total value of your change is $1.50

Let’s try to make some sense of this. The percent sign % is Python’s string formatting operator. In general,
the string formatting operator is used like this:

<template-string> % (<values>)

4.4. OUTPUT AS STRING MANIPULATION 51

Percent signs inside the template-stringmark “slots” into which the values are inserted. There must
be exactly one slot for each value. Each of the slots is described by a format specifier that tells Python how
the value for that slot should appear.

Returning to the example, the template contains a single specifier at the end: %0.2f. The value of
total will be inserted into the template in place of the specifier. The specifier also tells Python that total
is a floating point number that should be rounded to two decimal places. To understand the formatting, we
need to look at the structure of the specifier.

A formatting specifier has this general form:

%<width>.<precision><type-char>

The specifier starts with a % and ends with a character that indicates the data type of the value being inserted.
We will use three different format types: decimal, float, and string. Decimal mode is used to display ints as
base-10 numbers. (Python allows ints to be printed using a number of different bases; we will only use the
normal decimal representation.) Float and string formats are obviously used for the corresponding data types.

The width and precision portions of a specifier are optional. If present, width tells how many
spaces to use in displaying the value. If a value requires more room than is given in width, Python will just
expand the width so that the value fits. You can use a 0 width to indicate “use as much space as needed.”
Precision is used with floating point values to indicate the desired number of digits after the decimal. The
example specifier %0.2f tells Python to insert a floating point value using as much space as necessary and
rounding it to two decimal places.

The easiest way to get the hang of formatting is just to play around with some examples in the interactive
environment.

>>> "Hello %s %s, you may have won $%d!" % ("Mr.", "Smith", 10000)
’Hello Mr. Smith, you may have already won $10000!’

>>> ’This int, %5d, was placed in a field of width 5’ % (7)
’This int, 7, was placed in a field of width 5’

>>> ’This int, %10d, was placed in a field of width 10’ % (7)
’This int, 7, was placed in a field of width 10’

>>> ’This float, %10.5f, has width 10 and precision 5.’ % (3.1415926)
’This float, 3.14159, has width 10 and precision 5.’

>>> ’This float, %0.5f, has width 0 and precision 5.’ % (3.1415926)
’This float, 3.14159, has width 0 and precision 5.’

>>> "Compare %f and %0.20f" % (3.14, 3.14)
’Compare 3.140000 and 3.14000000000000012434’

A couple points are worth noting here. If the width in the specifier is larger than needed, the value is
right-justified in the field by default. You can left-justify the value in the field by preceding the width with
a minus sign (e.g., %-8.3f). The last example shows that if you print enough digits of a floating point
number, you will almost always find a “surprise.” The computer can’t represent 3.14 exactly as a floating
point number. The closest value it can represent is ever so slightly larger than 3.14. If not given an explicit
precision, Python will print the number out to a few decimal places. The slight extra extra amount shows up
if you print lots of digits. Generally, Python only displays a closely rounded version of a float. Using explicit
formatting allows you to see the full result down to the last bit.

4.4.3 Better Change Counter

Let’s close our formatting discussion with one more example program. Given what you have learned about
floating point numbers, you might be a little uneasy about using them to represent money.

52 CHAPTER 4. COMPUTING WITH STRINGS

Suppose you are writing a computer system for a bank. Your customers would not be too happy to learn
that a check went through for an amount “very close to $107.56.” They want to know that the bank is keeping
precise track of their money. Even though the amount of error in a given value is very small, the small errors
can be compounded when doing lots of calculations, and the resulting error could add up to some real cash.
That’s not a satisfactory way of doing business.

A better approach would be to make sure that our program used exact values to represent money. We
can do that by keeping track of the money in cents and using an int (or long int) to store it. We can then
convert this into dollars and cents in the output step. If total represents the value in cents, then we can
get the number of dollars by total / 100 and the cents from total % 100. Both of these are integer
calculations and, hence, will give us exact results. Here is the updated program:

change2.py
A program to calculate the value of some change in dollars
This version represents the total cash in cents.

def main():
print "Change Counter"
print
print "Please enter the count of each coin type."
quarters = input("Quarters: ")
dimes = input("Dimes: ")
nickels = input("Nickels: ")
pennies = input("Pennies: ")
total = quarters * 25 + dimes * 10 + nickels * 5 + pennies
print
print "The total value of your change is $%d.%02d" \

% (total/100, total%100)

main()

I have split the final print statement across two lines. Normally a statement ends at the end of the line.
Sometimes it is nicer to break a long statement into smaller pieces. A backslash at the end of a line is one
way to indicate that a statement is continued on the following line. Notice that the backslash must appear
outside of the quotes; otherwise, it would be considered part of the string literal.

The string formatting in the print statement contains two slots, one for dollars as an int and one for cents
as an int. This example also illustrates one additional twist on format specifiers. The value of cents is printed
with the specifier %02d. The zero in front of the width tells Python to pad the field (if necessary) with zeroes
instead of spaces. This ensures that a value like 10 dollars and 5 cents prints as $10.05 rather than $10.
5.

4.5 File Processing

I began the chapter with a reference to word-processing as an application of the string data type. One critical
feature of any word processing program is the ability to store and retrieve documents as files on disk. In this
section, we’ll take a look at file input and output, which, as it turns out, is really just another form of string
processing.

4.5.1 Multi-Line Strings

Conceptually, a file is a sequence of data that is stored in secondary memory (usually on a disk drive). Files
can contain any data type, but the easiest files to work with are those that contain text. Files of text have
the advantage that they can be read and understood by humans, and they are easily created and edited using
general-purpose text editors and word processors. In Python, text files can be very flexible, since it is easy to
convert back and forth between strings and other types.

4.5. FILE PROCESSING 53

You can think of a text file as a (possibly long) string that happens to be stored on disk. Of course, a
typical file generally contains more than a single line of text. A special character or sequence of characters is
used to mark the end of each line. There are numerous conventions for end-of-line markers. Python uses a
single character called newline as a marker.

You can think of newline as the character produced when you press the � Enter � key on your keyboard.
Although a newline is a single character, it is represented in Python (and many other computer languages)
using the special notation ’

�
n’. Other special characters are represented using a similar notation (i.e., ’

�
t’

for � Tab �).
Let’s take a look at a concrete example. Suppose you type the following lines into a text editor exactly as

shown here.

Hello
World

Goodbye 32

When stored to a file, you get this sequence of characters.

Hello\nWorld\n\nGoodbye 32\n

Notice that the blank line becomes a bare newline in the resulting file/string.
By the way, by embedding newline characters into output strings, you can produce multiple lines of output

with a single print statement. Here is the example from above printed interactively.

>>> print "Hello\nWorld\n\nGoodbye 32\n"
Hello
World

Goodbye 32

>>>

If you simply ask Python to evaluate a string containing newline characters, you will just get the embedded
newline representation back again.

>>>"Hello\nWorld\n\nGoodbye 32\n"
’Hello\nWorld\n\nGoodbye 32\n’

It’s only when a string is printed that the special characters affect how the string is displayed.

4.5.2 File Processing

The exact details of file-processing differ substantially among programming languages, but virtually all lan-
guages share certain underlying file manipulation concepts. First, we need some way to associate a file on
disk with a variable in a program. This process is called opening a file. Once a file has been opened, it is
manipulated through the variable we assign to it.

Second, we need a set of operations that can manipulate the file variable. At the very least, this includes
operations that allow us to read the information from a file and write new information to a file. Typically, the
reading and writing operations for text files are similar to the operations for text-based, interactive input and
output.

Finally, when we are finished with a file, it is closed. Closing a file makes sure that any bookkeeping that
was necessary to maintain the correspondence between the file on disk and the file variable is finished up. For
example, if you write information to a file variable, the changes might not show up on the disk version until
the file has been closed.

This idea of opening and closing files is closely related to how you might work with files in an application
program like a word processor. However, the concepts are not exactly the same. When you open a file in a
program like Microsoft Word, the file is actually read from the disk and stored into RAM. In programming

54 CHAPTER 4. COMPUTING WITH STRINGS

terminology, the file is opened for reading and the the contents of the file are then read into memory via file
reading operations. At this point, the file is closed (again in the programming sense). As you “edit the file,”
you are really making changes to data in memory, not the file itself. The changes will not show up in the file
on the disk until you tell the application to “save” it.

Saving a file also involves a multi-step process. First, the original file on the disk is reopened, this time in
a mode that allows it to store information—the file on disk is opened for writing. Doing so actually erases the
old contents of the file. File writing operations are then used to copy the current contents of the in-memory
version into the new file on the disk. From your perspective, it appears that you have edited an existing file.
From the program’s perspective, you have actually opened a file, read its contents into memory, closed the
file, created a new file (having the same name), written the (modified) contents of memory into the new file,
and closed the new file.

Working with text files is easy in Python. The first step is to associate a file with a variable using the
open function.

<filevar> = open(<name>, <mode>)

Here name is a string that provides the name of the file on the disk. The mode parameter is either the string
"r" or "w" depending on whether we intend to read from the file or write to the file.

For example, to open a file on our disk called “numbers.dat” for reading, we could use a statement like
the following.

infile = open("numbers.dat", "r")

Now we can use the variable infile to read the contents of numbers.dat from the disk.
Python provides three related operations for reading information from a file:

<filevar>.read()
<filevar>.readline()
<filevar>.readlines()

The read operation returns the entire contents of the file as a single string. If the file contains more than one
line of text, the resulting string has embedded newline characters between the lines.

Here’s an example program that prints the contents of a file to the screen.

printfile.py
Prints a file to the screen.

def main():
fname = raw_input("Enter filename: ")
infile = open(fname,’r’)
data = infile.read()
print data

main()

The program first prompts the user for a filename and then opens the file for reading through the variable
infile. You could use any name for the variable, I used infile to emphasize that the file was being used
for input. The entire contents of the file is then read as one large string and stored in the variable data.
Printing data causes the contents to be displayed.

The readline operation can be used to read one line from a file; that is, it reads all the characters up
through the next newline character. Each time it is called, readline returns the next line from the file. This
is analogous to raw input which reads characters interactively until the user hits the � Enter � key; each
call to raw input get another line from the user. One thing to keep in mind, however, is that the string
returned by readlinewill always end with a newline character, whereas raw input discards the newline
character.

As a quick example, this fragment of code prints out the first five lines of a file.

4.5. FILE PROCESSING 55

infile = open(someFile, ’r’)
for i in range(5):

line = infile.readline()
print line[:-1]

Notice the use of slicing to strip off the newline character at the end of the line. Since print automatically
jumps to the next line (i.e., it outputs a newline), printing with the explicit newline at the end would put an
extra blank line of output between the lines of the file.

As an alternative to readline, when you want to loop through all the (remaining) lines of a file, you
can use readlines. This operation returns a sequence of strings representing the lines of the file. Used
with a for loop, it is a particularly handy way to process each line of a file.

infile = open(someFile, ’r’)
for line in infile.readlines():

process the line here
infile.close()

Opening a file for writing prepares that file to receive data. If no file with the given name exists, a new
file will be created. A word of warning: if a file with the given name does exist, Python will delete it and
create a new, empty file. When writing to a file, make sure you do not clobber any files you will need later!
Here is an example of opening a file for output.

outfile = open("mydata.out", "w")

We can put data into a file, using the write operation.

<file-var>.write(<string>)

This is similar to print, except that write is a little less flexible. The write operation takes a single
parameter, which must be a string, and writes that string to the file. If you want to start a new line in the file,
you must explicitly provide the newline character.

Here’s a silly example that writes two lines to a file.

outfile = open("example.out", ’w’)
count = 1
outfile.write("This is the first line\n")
count = count + 1
outfile.write("This is line number %d" % (count))
outfile.close()

Notice the use of string formatting to write out the value of the variable count. If you want to output
something that is not a string, you must first convert it; the string formatting operator is often a handy way to
do this. This code will produce a file on disk called “example.out” containing the following two lines:

This is the first line
This is line number 2

If “example.out” existed before executing this fragment, it’s old contents were destroyed.

4.5.3 Example Program: Batch Usernames

To see how all these pieces fit together, let’s redo the username generation program. Our previous version
created usernames interactively by having the user type in his or her name. If we were setting up accounts for
a large number of users, the process would probably not be done interactively, but in batch mode. In batch
processing, program input and output is done through files.

Our new program is designed to process a file of names. Each line of the input file will contain the
first and last names of a new user separated by one or more spaces. The program produces an output file
containing a line for each generated username.

56 CHAPTER 4. COMPUTING WITH STRINGS

userfile.py
Program to create a file of usernames in batch mode.

import string

def main():
print "This program creates a file of usernames from a"
print "file of names."

get the file names
infileName = raw_input("What file are the names in? ")
outfileName = raw_input("What file should the usernames go in? ")

open the files
infile = open(infileName, ’r’)
outfile = open(outfileName, ’w’)

process each line of the input file
for line in infile.readlines():

get the first and last names from line
first, last = string.split(line)
create the username
uname = string.lower(first[0]+last[:7])
write it to the output file
outfile.write(uname+’\n’)

close both files
infile.close()
outfile.close()

print "Usernames have been written to", outfileName

main()

There are a few things worth noticing in this program. I have two files open at the same time, one for
input (infile) and one for output (outfile). It’s not unusual for a program to operate on several files
simultaneously. Also, when creating the username, I used the lower function from the string library.
This ensures that the username is all lower case, even if the input names are mixed case. Finally, you should
also notice the line that writes the username to the file.

outfile.write(uname+’\n’)

Concatenating the newline character is necessary to indicate the end of line. Without this, all of the usernames
would run together in one giant line.

4.5.4 Coming Attraction: Objects

Have you noticed anything strange about the syntax of the file processing examples? To apply an operation
to a file, we use dot notation. For example, to read from infile we type infile.read(). This is
different from the normal function application that we have used before. Afterall, to take the absolute value
of a variable x, we type abs(x), not x.abs().

In Python, a file is an example of an object. Objects combine both data and operations together. An
object’s operations, called methods, are invoked using the dot notation. That’s why the syntax looks a bit
different.

4.6. EXERCISES 57

For completeness, I should mention that strings are also objects in Python. If you have a relatively new
version of Python (2.0 or later), you can use string methods in place of the string library functions that we
discussed earlier. For example,

myString.split()

is equivalent to

string.split(myString)

If this object stuff sounds confusing right now, don’t worry; Chapter 5 is all about the power of objects (and
pretty pictures, too).

4.6 Exercises

1. Given the initial statements:

import string
s1 = "spam"
s2 = "ni!"

Show the result of evaluating each of the following string expressions.

(a) "The Knights who say, " + s2

(b) 3 * s1 + 2 * s2

(c) s1[1]

(d) s1[1:3]

(e) s1[2] + s2[:2]

(f) s1 + s2[-1]

(g) string.upper(s1)

(h) string.ljust(string.upper(s2),4) * 3

2. Given the same initial statements as in the previous problem, show a Python expression that could
construct each of the following results by performing string operations on s1 and s2.

(a) "NI"

(b) "ni!spamni!"

(c) "Spam Ni! Spam Ni! Spam Ni!"

(d) "span"

(e) ["sp","m"]

(f) "spm"

3. Show the output that would be generated by each of the following program fragments.

(a) for ch in "aardvark":
print ch

(b) for w in string.split("Now is the winter of our discontent..."):
print w

(c) for w in string.split("Mississippi", "i"):
print w,

58 CHAPTER 4. COMPUTING WITH STRINGS

(d) msg = ""
for s in string.split("secret","e"):

msg = msg + s
print msg

(e) msg = ""
for ch in "secret":

msg = msg + chr(ord(ch)+1)
print msg

4. Show the string that would result from each of the following string formatting operations. If the oper-
ation is not legal, explain why.

(a) "Looks like %s and %s for breakfast" % ("spam", "eggs")

(b) "There is %d %s %d %s" % (1,"spam", 4, "you")

(c) "Hello %s" % ("Suzie", "Programmer")

(d) "%0.2f %0.2f" % (2.3, 2.3468)

(e) "%7.5f %7.5f" % (2.3, 2.3468)

(f) "Time left %02d:%05.2f" % (1, 37.374)

(g) "%3d" % ("14")

5. Explain why public key encryption is more useful for securing communications on the Internet than
private (shared) key encryption.

6. A certain CS professor gives 5-point quizzes that are graded on the scale 5-A, 4-B, 3-C, 2-D, 1-F, 0-F.
Write a program that accepts a quiz score as an input and prints out the corresponding grade.

7. A certain CS professor gives 100-point exams that are graded on the scale 90–100:A, 80–89:B, 70–
79:C, 60–69:D, � 60:F. Write a program that accepts an exam score as input and prints out the corre-
sponding grade.

8. An acronym is a word formed by taking the first letters of the words in a phrase and making a word
from them. For example, RAM is an acronym for “random access memory.” Write a program that
allows the user to type in a phrase and outputs the acronym for that phrase. Note: the acronym should
be all uppercase, even if the words in the phrase are not capitalized.

9. Numerologists claim to be able to determine a person’s character traits based on the “numeric value”
of a name. The value of a name is determined by summing up the values of the letters of the name
where ’a’ is 1, ’b’ is 2, ’c’ is 3 etc., up to ’z’ being 26. For example, the name “Zelle” would have the
value 26 � 5 � 12 � 12 � 5 � 60 (which happens to be a very auspicious number, by the way). Write a
program that calculates the numeric value of a single name provided as input.

10. Expand your solution to the previous problem to allow the calculation of a complete name such as “John
Marvin Zelle” or “John Jacob Jingleheimer Smith.” The total value is just the sum of the numeric value
for each name.

11. A Caesar cipher is a simple substitution cipher based on the idea of shifting each letter of the plaintext
message a fixed number (called the key) of positions in the alphabet. For example, if the key value is
2, the word “Sourpuss” would be encoded as “Uqwtrwuu.” The original message can be recovered by
“reencoding” it using the negative of the key.

Write a program that can encode and decode Caesar ciphers. The input to the program will be a string
of plaintext and the value of the key. The output will be an encoded message where each character in
the original message is replaced by shifting it key characters in the ASCII character set. For example,
if ch is a character in the string and key is the amount to shift, then the character that replaces ch can
be calculated as: chr(ord(ch) + key).

4.6. EXERCISES 59

12. One problem with the previous exercise is that it does not deal with the case when we “drop off the
end” of the alphabet (or ASCII encodings). A true Caesar cipher does the shifting in a circular fashion
where the next character after “z” is “a”. Modify your solution to the previous problem to make it
circular. You may assume that the input consists only of letters and spaces.

13. Write a program that counts the number of words in a sentence entered by the user.

14. Write a program that calculates the average word length in a sentence entered by the user.

15. Write an improved version of the Chaos program from Chapter 1 that allows a user to input two initial
values and the number of iterations and then prints a nicely formatted table showing how the values
change over time. For example, if the starting values were .25 and .26 with 10 iterations, the table
might look like this:

index 0.25 0.26

1 0.731250 0.750360
2 0.766441 0.730547
3 0.698135 0.767707
4 0.821896 0.695499
5 0.570894 0.825942
6 0.955399 0.560671
7 0.166187 0.960644
8 0.540418 0.147447
9 0.968629 0.490255

10 0.118509 0.974630

16. Write an improved version of the future value program from Chapter 2. Your program will prompt
the user for the amount of the investment, the annualized interest rate, and the number of years of
the investment. The program will then output a nicely formatted table that tracks the value of the
investment year by year. Your output might look something like this:

Years Value

0 $2000.00
1 $2200.00
2 $2420.00
3 $2662.00
4 $2928.20
5 $3221.02
6 $3542.12
7 $3897.43

17. Redo any of the previous programming problems to make them batch oriented (using text files for input
and output).

18. Word count. A common utility on Unix/Linux systems is a small program called “wc.” This program
analyzes a file to determine the number of lines, words, and characters contained therein. Write your
own version of wc. The program should accept a file name as input and then print three numbers
showing the count of lines, words, and characters in the file.

60 CHAPTER 4. COMPUTING WITH STRINGS

Chapter 5

Objects and Graphics

So far we have been writing programs that use the built-in Python data types for numbers and strings. We
saw that each data type could represent a certain set of values, and each had a set of associated operations.
Basically, we viewed the data as passive entities that were manipulated and combined via active operations.
This is a traditional way to view computation. To build complex systems, however, it helps to take a richer
view of the relationship between data and operations.

Most modern computer programs are built using an object-oriented (OO) approach. Object orientation
is not easily defined. It encompasses a number of principles for designing and implementing software, prin-
ciples that we will return to numerous times throughout course of this book. This chapter provides a basic
introduction to object concepts by way of some computer graphics.

5.1 The Object of Objects

The basic idea of object-oriented development is to view a complex system as the interaction of simpler
objects. The word objects is being used here in a specific technical sense. Part of the challenge of OO
programming is figuring out the vocabulary. You can think of an OO object as a sort of active data type that
combines both data and operations. To put it simply, objects know stuff (they contain data), and they can do
stuff (they have operations). Objects interact by sending each other messages. A message is simply a request
for an object to perform one of its operations.

Consider a simple example. Suppose we want to develop a data processing system for a college or
university. We will need to keep track of considerable information. For starters, we must keep records
on the students who attend the school. Each student could be represented in the program as an object. A
student object would contain certain data such as name, ID number, courses taken, campus address, home
address, GPA, etc. Each student object would also be able to respond to certain requests. For example,
to send out a mailing, we would need to print an address for each student. This task might be handled by a
printCampusAddress operation. When a particular student object is sent the printCampusAddress
message, it prints out its own address. To print out all the addresses, a program would loop through the
collection of student objects and send each one in turn the printCampusAddressmessage.

Objects may refer to other objects. In our example, each course in the college might also be represented
by an object. Course objects would know things such as who the instructor is, what students are in the
course, what the prerequisites are, and when and where the course meets. One example operation might be
addStudent, which causes a student to be enrolled in the course. The student being enrolled would be
represented by the appropriate student object. Instructors would be another kind of object, as well as rooms,
and even times. You can see how successive refinement of these ideas could lead to a rather sophisticated
model of the information structure of the college.

As a beginning programmer, you’re probably not yet ready to tackle a college information system. For
now, we’ll study objects in the context of some simple graphics programming.

61

62 CHAPTER 5. OBJECTS AND GRAPHICS

5.2 Graphics Programming

Modern computer applications are not limited to the sort of textual input and output that we have been using
so far. Most of the applications that you are familiar with probably have a so-called Graphical User Interface
(GUI) that provides visual elements like windows, icons (representative pictures), buttons and menus.

Interactive graphics programming can be very complicated; entire textbooks are devoted to the intricacies
of graphics and graphical interfaces. Industrial-strength GUI applications are usually developed using a
dedicated graphics programming framework. Python comes with its own standard GUI module called Tkinter.
As GUI frameworks go, Tkinter is one of the simplest to use, and Python is great language for developing
real-world GUIs. Even so, taking the time to learn Tkinter would detract from the more fundamental task of
learning the principles of programming and design that are the focus of this book.

To make learning easier, I have written a graphics library (graphics.py) for use with this book. This
library is freely available as a Python module file1 and you are welcome to use it as you see fit. Using the
library is as easy as placing a copy of the graphics.py file in the same folder as your graphics program(s).
Alternatively, you can put graphics.py in the system directory where other Python libraries are stored so
that it can be used from any folder on the system.

The graphics library makes it easy to write simple graphics programs. As you do, you will be learning
principles of object-oriented programming and computer graphics that can be applied in more sophisticated
graphical programming environments. The details of the graphics module will be explored in later sec-
tions. Here we’ll concentrate on a basic hands-on introduction to whet your appetite.

As usual, the best way to start learning new concepts is to roll up your sleeves and try out some examples.
The first step is to import the graphics module. Assuming you have placed graphics.py in an appropriate
place, you can import the graphics commands into an interactive Python session.

>>> import graphics

Next we need to create a place on the screen where the graphics will appear. That place is a graphics
window or GraphWin, which is provided by the graphics module.

>>> win = graphics.GraphWin()

This command creates a new window on the screen. The window will have the title “Graphics Window.” The
GraphWin may overlap your Python interpreter window, so you might have to resize the Python window to
make both fully visible. Figure 5.1 shows an example screen view.

The GraphWin is an object, and we have assigned it to the the variable called win. We can manipulate
the window object through this variable, similar to the way that file objects are manipulated through file
variables. For example, when we are finished with a window, we can destroy it. This is done by issuing the
close command.

>>> win.close()

Typing this command causes the window to vanish from the screen.
We will be working with quite a few commands from the graphics library, and it gets tedious having

to type the graphics. notation every time we use one. Python has an alternative form of import that can
help out.

from graphics import *

The from statement allows you to load specific definitions from a library module. You can either list the
names of definitions to be imported or use an asterisk, as shown, to import everything defined in the module.
The imported commands become directly available without having to preface them with the module name.
After doing this import, we can create a GraphWin more simply.

win = GraphWin()

1See Appendix A for information on how to obtain the graphics library and other supporting materials for this book.

5.2. GRAPHICS PROGRAMMING 63

Figure 5.1: Screen shot with a Python window and a GraphWin

All of the rest of the graphics examples will assume that the entire graphics module has been imported
using from.

Let’s try our hand at some drawing. A graphics window is actually a collection of tiny points called
pixels (short for picture elements). By controlling the color of each pixel, we control what is displayed
in the window. By default, a GraphWin is 200 pixels tall and 200 pixels wide. That means there are
40,000 pixels in the GraphWin. Drawing a picture by assigning a color to each individual pixel would be a
daunting challenge. Instead, we will rely on a library of graphical objects. Each type of object does its own
bookkeeping and knows how to draw itself into a GraphWin.

The simplest object in the graphics module is a Point. In geometry, a point is a dimensionless
location in space. A point is located by reference to a coordinate system. Our graphics object Point is
similar; it can represent a location in a GraphWin. We define a point by supplying x and y coordinates

�
x � y � .

The x value represents the horizontal location of the point, and the y value represents the vertical.
Traditionally, graphics programmers locate the point

�
0 � 0 � in the upper-left corner of the window. Thus

x values increase from left to right, and y values increase from top to bottom. In the default 200 x 200
GraphWin, the lower-right corner has the coordinates

�
199 � 199 � . Drawing a Point sets the color of the

corresponding pixel in the GraphWin. The default color for drawing is black.
Here is a sample interaction with Python illustrating the use of Points.

>>> p = Point(50,60)
>>> p.getX()
50
>>> p.getY()
60
>>> win = GraphWin()
>>> p.draw(win)
>>> p2 = Point(140,100)
>>> p2.draw(win)

The first line creates a Point located at
�
50 � 60 � . After the Point has been created, its coordinate values can

be accessed by the operations getX and getY. A Point is drawn into a window using the draw operation.
In this example, two different point objects (p and p2) are created and drawn into the GraphWin called
win. Figure 5.2 shows the resulting graphical output.

In addition to points, the graphics library contains commands for drawing lines, circles, rectangles, ovals,

64 CHAPTER 5. OBJECTS AND GRAPHICS

Figure 5.2: Graphics window with two points drawn.

polygons and text. Each of these objects is created and drawn in a similar fashion. Here is a sample interaction
to draw various shapes into a GraphWin.

>>> #### Open a graphics window
>>> win = GraphWin(’Shapes’)
>>> #### Draw a red circle centered at point (100,100) with radius 30
>>> center = Point(100,100)
>>> circ = Circle(center, 30)
>>> circ.setFill(’red’)
>>> circ.draw(win)
>>> #### Put a textual label in the center of the circle
>>> label = Text(center, "Red Circle")
>>> label.draw(win)
>>> #### Draw a square using a Rectangle object
>>> rect = Rectangle(Point(30,30), Point(70,70))
>>> rect.draw(win)
>>> #### Draw a line segment using a Line object
>>> line = Line(Point(20,30), Point(180, 165))
>>> line.draw(win)
>>> #### Draw an oval using the Oval object
>>> oval = Oval(Point(20,150), Point(180,199))
>>> oval.draw(win)

Try to figure out what each of these statements does. If you type them in as shown, the final result will look
like Figure 5.3.

5.3 Using Graphical Objects

Some of the examples in the above interactions may look a bit strange to you. To really understand the
graphics module, we need to take an object-oriented point of view. Recall, objects combine data with
operations. Computation is performed by asking an object to carry out one of its operations. In order to make
use of objects, you need to know how to create them and how to request operations.

In the interactive examples above, we manipulated several different kinds of objects: GraphWin, Point,
Circle, Oval, Line, Text, and Rectangle. These are examples of classes. Every object is an instance
of some class, and the class describes the properties the instance will have.

Borrowing a biological metaphor, when we say that Fido is a dog, we are actually saying that Fido is a
specific individual in the larger class of all dogs. In OO terminology, Fido is an instance of the dog class.

5.3. USING GRAPHICAL OBJECTS 65

Figure 5.3: Various shapes from the graphics module.

Because Fido is an instance of this class, we expect certain things. Fido has four legs, a tail, a cold, wet nose
and he barks. If Rex is a dog, we expect that he will have similar properties, even though Fido and Rex may
differ in specific details such as size or color.

The same ideas hold for our computational objects. We can create two separate instances of Point, say
p and p2. Each of these points has an x and y value, and they both support the same set of operations like
getX and draw. These properties hold because the objects are Points. However, different instances can
vary in specific details such as the values of their coordinates.

To create a new instance of a class, we use a special operation called a constructor. A call to a constructor
is an expression that creates a brand new object. The general form is as follows.

<class-name>(<param1>, <param2>, ...)

Here <class-name> is the name of the class that we want to create a new instance of, e.g., Circle or
Point. The expressions in the parentheses are any parameters that are required to initialize the object. The
number and type of the parameters depends on the class. A Point requires two numeric values, while a
GraphWin can be constructed without any parameters. Typically, a constructor is used on the right side of
an assignment statement, and the resulting object is immediately assigned to a variable on the left side that is
then used to manipulate the object.

To take a concrete example, let’s look at what happens when we create a graphical point. Here is a
constructor statement from the interactive example above.

p = Point(50,60)

The constructor for the Point class requires two parameters giving the x and y coordinates for the new point.
These values are stored as instance variables inside of the object. In this case, Python creates an instance
of Point having an x value of 50 and a y value of 60. The resulting point is then assigned to the variable
p. A conceptual diagram of the result is shown in Figure 5.4. Note that, in this diagram as well as similar
ones later on, only the most salient details are shown. Points also contain other information such as their
color and which window (if any) they are drawn in. Most of this information is set to default values when the
Point is created.

To perform an operation on an object, we send the object a message. The set of messages that an object
responds to are called the methods of the object. You can think of methods as functions that live inside of the
object. A method is invoked using dot-notation.

<object>.<method-name>(<param1>, <param2>, ...)

The number and type of the parameters is determined by the method being used. Some methods require no
parameters at all. You can find numerous examples of method invocation in the interactive examples above.

As examples of parameterless methods, consider these two expressions.

66 CHAPTER 5. OBJECTS AND GRAPHICS

x:

60

50

p:

y:

Point

Figure 5.4: Conceptual picture of the result of p = Point(50,60). The variable p refers to a freshly
created Point having the given coordinates.

p.getX()
p.getY()

The getX and getY methods return the x and y values of a point, respectively. Methods such as these are
sometimes called accessors, because they allow us to access information from the instance variables of the
object.

Other methods change the values of an object’s instance variables, hence changing the state of the object.
All of the graphical objects have a move method. Here is a specification:

move(dx, dy): Moves the object dx units in the x direction and dy units in the y direction.

To move the point p to the right 10 units, we could use this statement.

p.move(10,0)

This changes the x instance variable of p by adding 10 units. If the point is currently drawn in a GraphWin,
move will also take care of erasing the old image and drawing it in its new position. Methods that change the
state of an object are sometimes called mutators.

The move method must be supplied with two simple numeric parameters indicating the distance to move
the object along each dimension. Some methods require parameters that are themselves complex objects. For
example, drawing a Circle into a GraphWin involves two objects. Let’s examine a sequence of commands
that does this.

circ = Circle(Point(100,100), 30)
win = GraphWin()
circ.draw(win)

The first line creates a Circle with a center located at the Point
�
100 � 100 � and a radius of 30. Notice that

we used the Point constructor to create a location for the first parameter to the Circle constructor. The
second line creates a GraphWin. Do you see what is happening in the third line? This is a request for the
Circle object circ to draw itself into the GraphWin object win. The visible effect of this statement is
a circle in the GraphWin centered at

�
100 � 100 � and having a radius of 30. Behind the scenes, a lot more is

happening.
Remember, the draw method lives inside the circ object. Using information about the center and

radius of the circle from the instance variables, the draw method issues an appropriate sequence of low-
level drawing commands (a sequence of method invocations) to the GraphWin. A conceptual picture of the
interactions among the Point, Circle and GraphWin objects is shown in Figure 5.5. Fortunately, we
don’t usually have to worry about these kinds of details; they’re all taken care of by the graphical objects. We
just create objects, call the appropriate methods, and let them do the work. That’s the power of object-oriented
programming.

There is one subtle “gotcha” that you need to keep in mind when using objects. It is possible for two
different variables to refer to exactly the same object; changes made to the object through one variable will
also be visible to the other. Suppose we are trying to write a sequence of code that draws a smiley face. We
want to create two eyes that are 20 units apart. Here is a sequence of code intended to draw the eyes.

5.3. USING GRAPHICAL OBJECTS 67

Circle

y:

x:

100

100

Pointcenter:

radius:

draw()

.

.

.

GraphWin

.

.

.

Low-level drawing commands

win:

30

circ:

Figure 5.5: Object interactions to draw a circle.

Incorrect way to create two circles.
leftEye = Circle(Point(80, 50), 5)
leftEye.setFill(’yellow’)
leftEye.setOutline(’red’)
rightEye = leftEye
rightEye.move(20,0)

The basic idea is to create the left eye and then copy that into a right eye which is then moved over 20 units.
This doesn’t work. The problem here is that only one Circle object is created. The assignment

rightEye = leftEye

simply makes rightEye refer to the very same circle as leftEye. Figure 5.6 shows the situation. When
the Circle is moved in the last line of code, both rightEye and leftEye refer to it in its new location
on the right side. This situation where two variables refer to the same object is called aliasing, and it can
sometimes produce rather unexpected results.

rightEye:

leftEye: Circle

y:

x:

50

80

Pointcenter:

radius: 10

Figure 5.6: Variables leftEye and rightEye are aliases.

One solution to this problem would be to create a separate circle for each eye.

A correct way to create two circles.
leftEye = Circle(Point(80, 50), 5)
leftEye.setFill(’yellow’)

68 CHAPTER 5. OBJECTS AND GRAPHICS

leftEye.setOutline(’red’)
rightEye = Circle(Point(100, 50), 5)
rightEye.setFill(’yellow’)
rightEye.setOutline(’red’)

This will certainly work, but it’s cumbersome. We had to write duplicated code for the two eyes. That’s easy
to do using a “cut and paste” approach, but it’s not very elegant. If we decide to change the appearance of the
eyes, we will have to be sure to make the changes in two places.

The graphics library provides a better solution; all graphical objects support a clone method that
makes a copy of the object. Using clone, we can rescue the original approach.

Correct way to create two circles, using clone.
leftEye = Circle(Point(80, 50), 5)
leftEye.setFill(’yellow’)
leftEye.setOutline(’red’)
rightEye = leftEye.clone() # rightEye is an exact copy of the left
rightEye.move(20,0)

Strategic use of cloning can make some graphics tasks much easier.

5.4 Graphing Future Value

Now that you have some idea of how to use objects from the graphics module, we’re ready to try some
real graphics programming. One of the most important uses of graphics is providing a visual representation
of data. They say a picture is worth a thousand words; it is almost certainly better than a thousand numbers.
Few programs that manipulate numeric data couldn’t be improved with a bit of graphical output. Remember
the program in Chapter 2 that computed the future value of a ten year investment? Let’s try our hand at
creating a graphical summary.

Programming with graphics requires careful planning. You’ll probably want pencil and paper handy to
draw some diagrams and scratch out calculations as we go along. As usual, we begin by considering the
specification of exactly what the program will do.

The original program futval.py had two inputs, the amount of money to be invested and the annual-
ized rate of interest. Using these inputs, the program calculated the change in principal year by year for ten
years using the formula principal � principal

�
1 � apr � . It then printed out the final value of the principal. In

the graphical version, the output will be a ten-year bar graph where the height of successive bars represents
the value of the principal in successive years.

Let’s use a concrete example for illustration. Suppose we invest $2000 at 10% interest. This table shows
the growth of the investment over a ten-year period:

Years Value

0 $2,000.00
1 $2,200.00
2 $2,420.00
3 $2,662.00
4 $2,928.20
5 $3,221.02
6 $3,542.12
7 $3,897.43
8 $4,287.18
9 $4,715.90

10 $5,187.49

Our program will display this information in a bar graph. Figure 5.7 shows the data in graphical form. The
graph actually contains eleven bars. The first bar shows the original value of the principal. For reference,
let’s number these bars according the the number of years of interest accrued, 0–10.

Here is a rough design for the program.

5.4. GRAPHING FUTURE VALUE 69

Figure 5.7: Bar graph showing growth of $2,000 at 10% interest

Print an introduction
Get value of principal and apr from user
Create a GraphWin
Draw scale labels on left side of window
Draw bar at position 0 with height corresponding to principal
For successive years 1 through 10

Calculate principal = principal * (1 + apr)
Draw a bar for this year having a height corresponding to principal

Wait for user to press Enter

The pause created by the last step is necessary to keep the graphics window displayed so that we can interpret
the results. Without such a pause, the program would end and the GraphWin would vanish with it.

While this design gives us the broad brush strokes for our algorithm, there are some very important details
that have been glossed over. We must decide exactly how big the graphics window will be and how we will
position the objects that appear in this window. For example, what does it mean to draw, say, a bar for year
five with height corresponding to $3,221.02?

Let’s start with the size of the GraphWin. Recall that the size of a window is given in terms of the
number of pixels in each dimension. Computer screens are also measured in terms of pixels. The number of
pixels or resolution of the screen is determined by the monitor and graphics card in the computer you use.
The lowest resolution screen you are likely to encounter these days is a so-called standard VGA screen that is
640 x 480 pixels. Most screens are considerably larger. Let’s make the GraphWin one quarter the size of a
640 x 480 screen, or 320 x 240. That should allow all users to see the graphical output as well as the textual
output from our program.

Given this analysis, we can flesh out a bit of our design. The third line of the design should now read:

Create a 320 x 240 GraphWin titled ‘‘Investment Growth Chart’’

You may be wondering how this will translate into Python code. You have already seen that the GraphWin
constructor allows an optional parameter to specify the title of the window. You may also supply width and
height parameters to control the size of the window. Thus, the command to create the output window will be:

win = GraphWin("Investment Growth Chart", 320, 240)

Next we turn to the problem of printing labels along the left edge of our window. To simplify the problem,
we will assume the graph is always scaled to a maximum of $10,000 with the five labels “0.0K” to “10.0K”
as shown in the example window. The question is how should the labels be drawn? We will need some Text

70 CHAPTER 5. OBJECTS AND GRAPHICS

objects. When creating Text, we specify the anchor point (the point the text is centered on) and the string to
use as the label.

The label strings are easy. Our longest label is five characters, and the labels should all line up on the
right side of a column, so the shorter strings will be padded on the left with spaces. The placement of the
labels is chosen with a bit of calculation and some trial and error. Playing with some interactive examples,
it seems that a string of length five looks nicely positioned in the horizontal direction placing the center 20
pixels in from the left edge. This leaves just a bit of whitespace at the margin.

In the vertical direction, we have just over 200 pixels to work with. A simple scaling would be to have
100 pixels represent $5,000. That means our five labels should be spaced 50 pixels apart. Using 200 pixels
for the range 0–10,000 leaves 240 � 200 � 40 pixels to split between the top and bottom margins. We might
want to leave a little more margin at the top to accommodate values that grow beyond $10,000. A little
experimentation suggests that putting the “ 0.0K” label 10 pixels from the bottom (position 230) seems to
look nice.

Elaborating our algorithm to include these details, the single step

Draw scale labels on left side of window

becomes a sequence of steps

Draw label " 0.0K" at (20, 230)
Draw label " 2.5K" at (20, 180)
Draw label " 5.0K" at (20, 130)
Draw label " 7.5K" at (20, 80)
Draw label "10.0K" at (20, 30)

The next step in the original design calls for drawing the bar that corresponds to the initial amount of the
principal. It is easy to see where the lower left corner of this bar should be. The value of $0.0 is located
vertically at pixel 230, and the labels are centered 20 pixels in from the left edge. Adding another 20 pixels
gets us to the right edge of the labels. Thus the lower left corner of the 0th bar should be at location

�
40 � 230 � .

Now we just need to figure out where the opposite (upper right) corner of the bar should be so that we
can draw an appropriate rectangle. In the vertical direction, the height of the bar is determined by the value
of principal. In drawing the scale, we determined that 100 pixels is equal to $5,000. This means that
we have 100

�
5000 � 0 � 02 pixels to the dollar. This tells us, for example, that a principal of $2,000 should

produce a bar of height 2000
�

� 02 � � 40 pixels. In general, the y position of the upper-right corner will be
given by 230 � �

principal � �
0 � 02 � . (Remember that 230 is the 0 point, and the y coordinates decrease going

up).
How wide should the bar be? The window is 320 pixels wide, but 40 pixels are eaten up by the labels on

the left. That leaves us with 280 pixels for 11 bars 280
�
11 � 25 � 4545. Let’s just make each bar 25 pixels; that

will give us a bit of margin on the right side. So, the right edge of our first bar will be at position 40 � 25 � 65.
We can now fill the details for drawing the first bar into our algorithm.

Draw a rectangle from (40, 230) to (65, 230 - principal * 0.02)

At this point, we have made all the major decisions and calculations required to finish out the problem. All
that remains is to percolate these details into the rest of the algorithm. Figure 5.8 shows the general layout of
the window with some of the dimensions we have chosen.

Let’s figure out where the lower-left corner of each bar is going to be located. We chose a bar width
of 25, so the bar for each successive year will start 25 pixels farther right than the previous year. We can
use a variable year to represent the year number and calculate the x coordinate of the lower left corner as�
year � �

25 � � 40. (The � 40 leaves space on the left edge for the labels.) Of course, the y coordinate of this
point is still 230 (the bottom of the graph).

To find the upper-right corner of a bar, we add 25 (the width of the bar) to the x value of the lower-left
corner. The y value of the upper right corner is determined from the (updated) value of principal exactly
as we determined it for the first bar. Here is the refined algorithm.

for year running from a value of 1 up through 10:
Calculate principal = principal * (1 + apr)

5.4. GRAPHING FUTURE VALUE 71

0.0K

2.5K

5.0K

7.5K

10.0K

(40,230)

320

(0,0)

(319,239)
25

10

40

50

(315,230)

240

Figure 5.8: Position of elements in future value bar graph.

Calculate xll = 25 * year + 40
Calculate height = principal * 0.02
Draw a rectangle from (xll, 230) to (xll+25, 230 - height)

The variable xll stands for x lower left—the x value of the lower left corner of the bar.
Putting all of this together produces the detailed algorithm shown below.

Print an introduction
Get value of principal and apr from user
Create a 320x240 GraphWin titled ‘‘Investment Growth Chart’’
Draw label " 0.0K" at (20,230)
Draw label " 2.5K" at (20, 180)
Draw label " 5.0K" at (20, 130)
Draw label " 7.5K" at (20, 80)
Draw label "10.0K" at (20, 30)
Draw a rectangle from (40, 230) to (65, 230 - principal * 0.02)
for year running from a value of 1 up through 10:

Calculate principal = principal * (1 + apr)
Calculate xll = 25 * year + 40
Draw a rectangle from (xll, 230) to (xll+25, 230 - principal * 0.02)

Wait for user to press Enter

Whew! That was a lot of work, but we are finally ready to translate this algorithm into actual Python
code. The translation is straightforward using objects from the graphics module. Here’s the program:

futval_graph.py

from graphics import *

def main():
Introduction
print "This program plots the growth of a 10-year investment."

Get principal and interest rate
principal = input("Enter the initial principal: ")
apr = input("Enter the annualized interest rate: ")

72 CHAPTER 5. OBJECTS AND GRAPHICS

Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 320, 240)
win.setBackground("white")
Text(Point(20, 230), ’ 0.0K’).draw(win)
Text(Point(20, 180), ’ 2.5K’).draw(win)
Text(Point(20, 130), ’ 5.0K’).draw(win)
Text(Point(20, 80), ’ 7.5k’).draw(win)
Text(Point(20, 30), ’10.0K’).draw(win)

Draw bar for initial principal
height = principal * 0.02
bar = Rectangle(Point(40, 230), Point(65, 230-height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

Draw bars for successive years
for year in range(1,11):

calculate value for the next year
principal = principal * (1 + apr)
draw bar for this value
xll = year * 25 + 40
height = principal * 0.02
bar = Rectangle(Point(xll, 230), Point(xll+25, 230-height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

raw_input("Press <Enter> to quit.")
win.close()

main()

If you study this program carefully, you will see that I added a number of features to spruce it up a bit.
All graphical objects support methods for changing color. I have set the background color of the window to
white (by default it’s gray).

win.setBackground("white")

I have also changed the color of the bar object. The following line asks the bar to color its interior green
(because it’s money, you know).

bar.setFill("green")

You can also change the color of a shape’s outline using the setOutline method. In this case, I have
chosen to leave the outline the default black so that the bars stand out from each other. To enhance this effect,
this code makes the outline wider (two pixels instead of the default one).

bar.setWidth(2)

You might also have noted the economy of notation in drawing the labels. Since we don’t ever change the
labels, saving them into a variable is unnecessary. We can just create a Text object, tell it to draw itself, and
be done with it. Here is an example.

Text(Point(20,230), ’ 0.0K’).draw(win)

Finally, take a close look at the use of the year variable in the loop.

5.5. CHOOSING COORDINATES 73

for year in range(1,11):

The expression range(1,11) produces a sequence of ints 1–10. The loop index variable year marches
through this sequence on successive iterations of the loop. So, the first time through year is 1, then 2, then
3, etc., up to 10. The value of year is then used to compute the proper position of the lower left corner of
each bar.

xll = year * 25 + 40

I hope you are starting to get the hang of graphics programming. It’s a bit strenuous, but very addictive.

5.5 Choosing Coordinates

The lion’s share of the work in designing the futval graph program was in determining the precise coor-
dinates where things would be placed on the screen. Most graphics programming problems require some sort
of a coordinate transformation to change values from a real-world problem into the window coordinates that
get mapped onto the computer screen. In our example, the problem domain called for x values representing
the year (0–10) and y values representing monetary amounts ($0–$10,000). We had to transform these val-
ues to be represented in a 320 x 240 window. It’s nice to work through an example or two to see how this
transformation happens, but it makes for tedious programming.

Coordinate transformation is an integral and well-studied component of computer graphics. It doesn’t
take too much mathematical savvy to see that the transformation process always follows the same general
pattern. Anything that follows a pattern can be done automatically. In order to save you the trouble of having
to explicitly convert back and forth between coordinate systems, the graphics module provides a simple
mechanism to do it for you. When you create a GraphWin you can specify a coordinate system for the
window using the setCoords method. The method requires four parameters specifying the coordinates
of the lower-left and upper-right corners, respectively. You can then use this coordinate system to place
graphical objects in the window.

To take a simple example, suppose we just want to divide the window into nine equal squares, Tic-Tac-
Toe fashion. This could be done without too much trouble using the default 200 x 200 window, but it would
require a bit of arithmetic. The problem becomes trivial if we first change the coordinates of the window to
run from 0 to 3 in both dimensions.

create a default 200x200 window
win = GraphWin("Tic-Tac-Toe")

set coordinates to go from (0,0) in the lower left
to (3,3) in the upper right.
win.setCoords(0.0, 0.0, 3.0, 3.0)

Draw vertical lines
Line(Point(1,0), Point(1,3)).draw(win)
Line(Point(2,0), Point(2,3)).draw(win)

Draw horizontal lines
Line(Point(0,1), Point(3,1)).draw(win)
Line(Point(0,2), Point(3,2)).draw(win)

Another benefit of this approach is that the size of the window can be changed by simply changing the di-
mensions used when the window is created (e.g. win = GraphWin("Tic-Tac-Toe", 300, 300)).
Because the same coordinates span the window (due to setCoords) the objects will scale appropriately to
the new window size. Using “raw” window coordinates would require changes in the definitions of the lines.

We can apply this idea to simplify our graphing future value program. Basically, we want our graphics
window to go from 0 through 10 (representing years) in the x dimension and from 0 to 10,000 (representing
dollars) in the y dimension. We could create just such a window like this.

74 CHAPTER 5. OBJECTS AND GRAPHICS

win = GraphWin("Investment Growth Chart", 320, 240)
win.setCoords(0.0, 0.0, 10.0, 10000.0)

Then creating a bar for any values of year and principal would be simple. Each bar starts at the given
year and a baseline of 0 and grows to the next year and a height equal to principal.

bar = Rectangle(Point(year, 0), Point(year+1, principal))

There is a small problem with this scheme. Can you see what I have forgotten? The bars will fill the entire
window; we haven’t left any room for labels or margins around the edges. This is easily fixed by expanding
the coordinates of the window slightly. Since our bars start at 0, we can locate the left side labels at -1. We
can add a bit of whitespace around the graph by expanding the coordinates slightly beyond that required for
our graph. A little experimentation leads to this window definition:

win = GraphWin("Investment Growth Chart", 320, 240)
win.setCoords(-1.75,-200, 11.5, 10400)

Here is the program again, using the alternative coordinate system:

futval_graph2.py

from graphics import *

def main():
Introduction
print "This program plots the growth of"
print "a 10-year investment."

Get principal and interest rate
principal = input("Enter the initial principal: ")
apr = input("Enter the annualized interest rate: ")

Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 320, 240)
win.setBackground("white")
win.setCoords(-1.75,-200, 11.5, 10400)
Text(Point(-1, 0), ’ 0.0K’).draw(win)
Text(Point(-1, 2500), ’ 2.5K’).draw(win)
Text(Point(-1, 5000), ’ 5.0K’).draw(win)
Text(Point(-1, 7500), ’ 7.5k’).draw(win)
Text(Point(-1, 10000), ’10.0K’).draw(win)

Draw bar for initial principal
bar = Rectangle(Point(0, 0), Point(1, principal))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

Draw a bar for each subsequent year
for year in range(1, 11):

principal = principal * (1 + apr)
bar = Rectangle(Point(year, 0), Point(year+1, principal))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

5.6. INTERACTIVE GRAPHICS 75

raw_input("Press <Enter> to quit.")

main()

Notice how the complex calculations have been eliminated. This version also makes it easy to change the
size of the GraphWin. Changing the window size to 640 x 480 produces a larger, but correctly drawn bar
graph. In the original program, all of the calculations would have to be redone to accommodate the new
scaling factors in the larger window.

Obviously, the second version of our program is much easier to develop and understand. When you are
doing graphics programming, give some consideration to choosing a coordinate system that will make your
task as simple as possible.

5.6 Interactive Graphics

Graphical interfaces can be used for input as well as output. In a GUI environment, users typically interact
with their applications by clicking on buttons, choosing items from menus, and typing information into
on-screen text boxes. These applications use a technique called event-driven programming. Basically, the
program draws a set of interface elements (often called widgets) on the screen, and then waits for the user to
do something.

When the user moves the mouse, clicks a button or types a key on the keyboard, this generates an event.
Basically, an event is an object that encapsulates data about what just happened. The event object is then sent
off to an appropriate part of the program to be processed. For example, a click on a button might produce
a button event. This event would be passed to the button handling code, which would then perform the
appropriate action corresponding to that button.

Event-driven programming can be tricky for novice programmers, since it’s hard to figure out “who’s in
charge” at any given moment. The graphics module hides the underlying event-handling mechanisms and
provides two simple ways of getting user input in a GraphWin.

5.6.1 Getting Mouse Clicks

We can get graphical information from the user via the getMouse method of the GraphWin class. When
getMouse is invoked on a GraphWin, the program pauses and waits for the user to click the mouse
somewhere in the graphics window. The spot where the user clicks is returned to the program as a Point.
Here is a bit of code that reports the coordinates of ten successive mouse clicks.

from graphics import *

win = GraphWin("Click Me!")
for i in range(10):

p = win.getMouse()
print "You clicked (%d, %d)" % (p.getX(), p.getY())

The value returned by getMouse() is a ready-made Point. We can use it like any other point using
accessors such as getX and getY or other methods such as draw and move.

Here is an example of an interactive program that allows the user to draw a triangle by clicking on three
points in a graphics window. This example is completely graphical, making use of Text objects as prompts.
No interaction with a Python text window is required. If you are programming in a Windows environment,
you can name this program using a .pyw extension. Then when the program is run, it will not even display
the Python shell window.

Program: triangle.pyw
from graphics import *

def main():
win = GraphWin("Draw a Triangle")

76 CHAPTER 5. OBJECTS AND GRAPHICS

win.setCoords(0.0, 0.0, 10.0, 10.0)
message = Text(Point(5, 0.5), "Click on three points")
message.draw(win)

Get and draw three vertices of triangle
p1 = win.getMouse()
p1.draw(win)
p2 = win.getMouse()
p2.draw(win)
p3 = win.getMouse()
p3.draw(win)

Use Polygon object to draw the triangle
triangle = Polygon(p1,p2,p3)
triangle.setFill("peachpuff")
triangle.setOutline("cyan")
triangle.draw(win)

Wait for another click to exit
message.setText("Click anywhere to quit.")
win.getMouse()

main()

The three-click triangle illustrates a couple new features of the graphics module. There is no triangle
class; however there is a general class Polygon that can be used for any multi-sided, closed shape. The
constructor for Polygon accepts any number of points and creates a polygon by using line segments to
connect the points in the order given and to connect the last point back to the first. A triangle is just a
three-sided polygon. Once we have three Points p1, p2, and p3, creating the triangle is a snap.

triangle = Polygon(p1, p2, p3)

You should also study how the Text object is used to provide prompts. A single Text object is created
and drawn near the beginning of the program.

message = Text(Point(5, 0.5), "Click on three points")
message.draw(win)

To change the prompt, we don’t need to create a new Text object, we can just change the text that is
displayed. This is done near the end of the program with the setText method.

message.setText("Click anywhere to quit.")

As you can see, the getMousemethod of GraphWin provides a simple way of interacting with the user
in a graphics-oriented program.

5.6.2 Handling Textual Input

In the triangle example, all of the input was provided through mouse clicks. The graphics module also
includes a simple Entry object that can be used to get keyboard input in a GraphWin.

An Entry object draws a box on the screen that can contain text. It understandssetText andgetText
methods just like the Text object does. The difference is that the contents of an Entry can be edited by the
user. Here’s a version of the temperature conversion program from Chapter 2 with a graphical user interface:

convert_gui1.pyw
Program to convert Celsius to Fahrenheit using a simple
graphical interface.

5.6. INTERACTIVE GRAPHICS 77

from graphics import *

def main():
win = GraphWin("Celsius Converter", 300, 200)
win.setCoords(0.0, 0.0, 3.0, 4.0)

Draw the interface
Text(Point(1,3), " Celsius Temperature:").draw(win)
Text(Point(1,1), "Fahrenheit Temperature:").draw(win)
input = Entry(Point(2,3), 5)
input.setText("0.0")
input.draw(win)
output = Text(Point(2,1),"")
output.draw(win)
button = Text(Point(1.5,2.0),"Convert It")
button.draw(win)
Rectangle(Point(1,1.5), Point(2,2.5)).draw(win)

wait for a mouse click
win.getMouse()

convert input
celsius = eval(input.getText())
fahrenheit = 9.0/5.0 * celsius + 32

display output and change button
output.setText("%0.1f" % fahrenheit)
button.setText("Quit")

wait for click and then quit
win.getMouse()
win.close()

main()

When run, this produces a window with an entry box for typing in a Celsius temperature and a “button”
for doing the conversion. The button is just for show. The program actually just pauses for a mouse click
anywhere in the window. Figure 5.9 shows how the window looks when the program starts.

Initially, the input entry box is set to contain the value 0.0. The user can delete this value and type in
another temperature. The program pauses until the user clicks the mouse. Notice that the point where the
user clicks is not even saved; the getMouse function is just used to pause the program until the user has a
chance to enter a value in the input box.

The program then processes the input in four steps. First, the text in the input box is converted into a
number (via eval). This number is then converted to degrees Fahrenheit. Finally, the resulting number is
turned back into a string (via the string formatting operator) for display in the output text area.

Figure 5.10 shows how the window looks after the user has typed an input and clicked the mouse. Notice
that the converted temperature shows up in the output area, and the label on the button has changed to “Quit”
to show that clicking again will exit the program. This example could be made much prettier using some of
the options in the graphics library for changing the colors, sizes and line widths of the various widgets. The
code for the program is deliberately Spartan to illustrate just the essential elements of GUI design.

Although the basic tools getMouse and Entry do not provide a full-fledged GUI environment, we will
see in later chapters how these simple mechanisms can support surprisingly rich interactions.

78 CHAPTER 5. OBJECTS AND GRAPHICS

Figure 5.9: Initial screen for graphical temperature converter

Figure 5.10: Graphical temperature converter after user input.

5.7. GRAPHICS MODULE REFERENCE 79

5.7 Graphics Module Reference

The examples in this chapter have touched on most of the elements in the graphics module. This section
provides a complete reference to the objects and functions provided in the graphics library. Experienced
programmers use these sorts of guides to learn about new libraries. You will probably want to refer back to
this section often when you are writing your own graphical programs.

5.7.1 GraphWin Objects

A GraphWin object represents a window on the screen where graphical images may be drawn. A program
may define any number of GraphWins. A GraphWin understands the following methods.

GraphWin(title, width, height) Constructs a new graphics window for drawing on the screen.
The parameters are optional, the default title is “Graphics Window,” and the default size is 200 x 200.

plot(x, y, color) Draws the pixel at
�
x � y � in the window. Color is optional, black is the default.

plotPixel(x, y, Color) Draws the pixel at the “raw” position
�
x � y � ignoring any coordinate trans-

formations set up by setCoords.

setBackground(color) Sets the window background to the given color. The initial background is
gray. See section 5.7.5 for information on specifying colors.

close() Closes the on-screen window.

getMouse() Pauses for the user to click a mouse in the window and returns where the mouse was clicked
as a Point object.

setCoords(xll, yll, xur, yur) Sets the coordinate system of the window. The lower left corner
is

�
xll � yll � and the upper right corner is

�
xur� yur � . All subsequent drawing will be done with respect

to the altered coordinate system (except for plotPixel).

flush() Updates the appearance of the window to reflect all drawing operations that have been done so
far. In normal operation, the window is only updated during “idle” periods. A sequence of drawing
commands may end up appearing all at once. If you want to get an animation effect, flush should be
called at appropriate places in the program to perform drawing operations incrementally.

5.7.2 Graphics Objects

The module provides the following classes of drawable objects: Point, Line, Circle, Oval, Rectangle,
Polygon, and Text. All objects are initially created unfilled with a black outline. All graphics objects sup-
port the following generic set of methods.

setFill(color) Sets the interior of the object to the given color.

setOutline(color) Sets the outline of the object to the given color.

setWidth(pixels) Sets the width of the outline of the object to this many pixels.

draw(aGraphWin) Draws the object into the given GraphWin.

undraw() Undraws the object from a graphics window. This produces an error if the object is not currently
drawn.

move(dx,dy) Moves the object dx units in the x direction and dy units in the y direction. If the object is
currently drawn, the image is adjusted to the new position.

clone() Returns a duplicate of the object. Clones are always created in an undrawn state. Other than that,
they are identical to the cloned object.

80 CHAPTER 5. OBJECTS AND GRAPHICS

Point Methods

Point(x,y) Constructs a point having the given coordinates.

getX() Returns the x coordinate of a point.

getY() Returns the y coordinate of a point.

Line Methods

Line(point1, point2) Constructs a line segment from point1 to point2.

setArrow(string) Sets the arrowhead status of a line. Arrows may be drawn at either the first point,
the last point, or both. Possible values of string are ’first’, ’last’, ’both’, and ’none’.
The default setting is ’none’.

getCenter() Returns a clone of the midpoint of the line segment.

getP1(), getP2() Returns a clone of the corresponding endpoint of the segment.

Circle Methods

Circle(centerPoint, radius) Constructs a circle with given center point and radius.

getCenter() Returns a clone of the center point of the circle.

getRadius() Returns the radius of the circle.

getP1(), getP2() Returns a clone of the corresponding corner of the circle’s bounding box. These are
opposite corner points of a square that circumscribes the circle.

Rectangle Methods

Rectangle(point1, point2) Constructs a rectangle having opposite corners at point1 and point2.

getCenter() Returns a clone of the center point of the rectangle.

getP1(), getP2() Returns a clone of corner points originally used to construct the rectangle.

Oval Methods

Oval(point1, point2) Constructs an oval in the bounding box determined by point1 and point2.

getCenter() Returns a clone of the point at the center of the oval.

getP1(), getP2 Return a clone of the corresponding point used to construct the oval.

Polygon Methods

Polygon(point1, point2, point3, ...) Constructs a polygon having the given points as ver-
tices.

getPoints() Returns a list containing clones of the points used to construct the polygon.

5.7. GRAPHICS MODULE REFERENCE 81

Text Methods

Text(anchorPoint, string) Constructs a text object that displays the given string centered at
anchorPoint. The text is displayed horizontally.

setText(string) Sets the text of the object to string.

getText() Returns the current string.

getAnchor() Returns a clone of the anchor point.

setFace(family) Changes the font face to the given family. Possible values are: ’helvetica’,
’courier’, ’times roman’, and ’arial’.

setSize(point) Changes the font size to the given point size. Sizes from 5 to 36 points are legal.

setStyle(style) Changes font to the given style. Possible values are: ’normal’, ’bold’,
’italic’, and ’bold italic’.

5.7.3 Entry Objects

Objects of type Entry are displayed as text entry boxes that can be edited by the user of the program. Entry
objects support the generic graphics methodsmove(), draw(graphwin),undraw(), setFill(color),
and clone(). The Entry specific methods are given below.

Entry(centerPoint, width) Constructs an Entry having the given center andwidth. The width
is specified in number of characters of text that can be displayed.

getAnchor() Returns a clone of the point where the entry box is centered.

getText() Returns the string of text that is currently in the entry box.

setText(string) Sets the text in the entry box to the given string.

5.7.4 Displaying Images

The graphics module also provides minimal support for displaying certain image formats into a GraphWin.
Most platforms will support JPEG, PPM and GIF images. Display is done with an Image object. Images
support the generic methods move(dx,dy), draw(graphwin), undraw(), and clone(). Image
specific methods are given below.

Image(centerPoint, filename) Constructs an image from contents of the given file, centered at
the given center point.

getAnchor() Returns a clone of the point where the image is centered.

5.7.5 Generating Colors

Colors are indicated by strings. Most normal colors such as ’red’, ’purple’, ’green’, ’cyan’, etc.
should be available. Many colors come in various shades, such as ’red1’, ’red2’,’red3’, ’red4’,
which are increasingly darker shades of red.

The graphics module also provides a function for mixing your own colors numerically. The function
color rgb(red, green, blue) will return a string representing a color that is a mixture of the inten-
sities of red, green and blue specified. These should be ints in the range 0–255. Thus color rgb(255, 0, 0)
is a bright red, while color rgb(130, 0, 130) is a medium magenta.

82 CHAPTER 5. OBJECTS AND GRAPHICS

5.8 Exercises

1. Pick an example of an interesting real-world object and describe it as a programming object by listing
its data (attributes, what it “knows”) and its methods (behaviors, what it can “do”).

2. Describe in your own words the object produced by each of the following operations from the graphics
module. Be as precise as you can. Be sure to mention such things as the size, position, and appearance
of the various objects. You may include a sketch if that helps.

(a) Point(130,130)

(b) c = Circle(Point(30,40),25)
c.setFill(’blue’)
c.setOutline(’red’)

(c) r = Rectangle(Point(20,20), Point(40,40))
r.setFill(color_rgb(0,255,150))
r.setWidth(3)

(d) l = Line(Point(100,100), Point(100,200))
l.setOutline(’red4’)
l.setArrow(’first’)

(e) Oval(Point(50,50), Point(60,100))

(f) shape = Polygon(Point(5,5), Point(10,10), Point(5,10), Point(10,5))
shape.setFill(’orange’)

(g) t = Text(Point(100,100), "Hello World!")
t.setFace("courier")
t.setSize(16)
t.setStyle("italic")

3. Describe what happens when the following interactive graphics program runs.

from graphics import *

def main():
win = GraphWin()
shape = Circle(Point(50,50), 20)
shape.setOutline("red")
shape.setFill("red")
shape.draw(win)
for i in range(10):

p = win.getMouse()
c = shape.getCenter()
dx = p.getX() - c.getX()
dy = p.getY() - c.getY()
shape.move(dx,dy)

win.close()

4. Modify the program from the previous problem in the following ways:

(a) Make it draw squares instead of circles.

(b) Have each successive click draw an additional square on the screen (rather than moving the ex-
isting one).

(c) Print a message on the window when all the clicks is entered, and wait for a final click before
closing the window.

5.8. EXERCISES 83

5. An archery target consists of a central circle of yellow surrounded by concentric rings of red, blue,
black and white. Each ring has the same “width,” which is the same as the radius of the yellow circle.
Write a program that draws such a target. Hint: Objects drawn later will appear on top of objects drawn
earlier.

6. Write a program that draws some sort of face.

7. Write a program that draws a winter scene with a Christmas tree and a snowman.

8. Write a program that draws 5 dice on the screen depicting a straight (1, 2, 3, 4, 5 or 2, 3, 4, 5, 6).

9. Modify the graphical future value program so that the input (principal and apr) also are done in a
graphical fashion using Entry objects.

10. Circle Intersection. Write a program that computes the intersection of a circle with a horizontal line
and displays the information textually and graphically.

Input: Radius of the circle and the y-intercept of the line.

Output: Draw a circle centered at
�
0 � 0 � with the given radius in a window with coordinates running

from -10,-10 to 10,10.
Draw a horizontal line across the window with the given y-intercept.
Draw the two points of intersection in red.
Print out the x values of the points of intersection.

Formula: x �
� � r2 � y2

11. Line Information.

This program allows the user to draw a line segment and then displays some graphical and textual
information about the line segment.

Input: 2 mouse clicks for the end points of the line segment.

Output: Draw the midpoint of the segment in cyan.
Draw the line.
Print the length and the slope of the line.

Formulas: dx � x2 � x1
dy � y2 � y1

slope � dy
�
dx

length � � dx2 � dy2

12. Rectangle Information.

This program displays information about a rectangle drawn by the user.

Input: 2 mouse clicks for the opposite corners of a rectangle.

Output: Draw the rectangle.
Print the perimeter and area of the rectangle.

Formulas:
area �

�
length � �

width �
perimeter � 2

�
length � width �

13. Triangle Information.

Same as previous problem, but with 3 clicks for the verticies of a triangle.

Formulas: For perimeter, see length from line problem.
area � � s

�
s � a � �

s � b � �
s � c � where a � b � and c are the lengths of the sides and s � a

�
b

�
c

2

84 CHAPTER 5. OBJECTS AND GRAPHICS

14. 5-click house.

You are to write a program that allows the user to draw a simple house using five mouse-clicks. The
first two clicks will be the opposite corners of the rectangular frame of the house. The third click will
indicate the center of the top edge of a rectangular door. The door should have a total width that is 1

5
of the width of the house frame. The sides of the door should extend from the corners of the top down
to the bottom of the frame. The fourth click will indicate the center of a square window. The window
is half as wide as the door. The last click will indicate the peak of the roof. The edges of the roof will
extend from the point at the peak to the corners of the top edge of the house frame.

1

2

43

5

Chapter 6

Defining Functions

The programs that we have written so far comprise a single function, usually called main. We have also been
using pre-written functions and methods including built-in Python functions (e.g., abs), functions from the
Python standard libraries (e.g., math.sqrt, string.split), and object methods from the graphics
module (e.g., myPoint.getX()).

Functions are an important tool for building sophisticated programs. This chapter covers the whys and
hows of designing your own functions to make your programs easier to write and understand.

6.1 The Function of Functions

In the previous chapter, we looked at a graphic solution to the future value problem. This program makes use
of the graphics library to draw a bar chart showing the growth of an investment. Here is the program as
we left it:

futval_graph2.py
from graphics import *

def main():
Introduction
print "This program plots the growth of a 10-year investment."

Get principal and interest rate
principal = input("Enter the initial principal: ")
apr = input("Enter the annualized interest rate: ")

Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 640, 480)
win.setBackground("white")
win.setCoords(-1.75,-200, 11.5, 10400)
Text(Point(-1, 0), ’ 0.0K’).draw(win)
Text(Point(-1, 2500), ’ 2.5K’).draw(win)
Text(Point(-1, 5000), ’ 5.0K’).draw(win)
Text(Point(-1, 7500), ’ 7.5k’).draw(win)
Text(Point(-1, 10000), ’10.0K’).draw(win)

Draw bar for initial principal
bar = Rectangle(Point(0, 0), Point(1, principal))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

85

86 CHAPTER 6. DEFINING FUNCTIONS

Draw a bar for each subsequent year
for year in range(1, 11):

principal = principal * (1 + apr)
bar = Rectangle(Point(year, 0), Point(year+1, principal))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

raw_input("Press <Enter> to quit.")

This is certainly a workable program, but there is a nagging issue of program style that really should be
addressed. Notice that this program draws bars in two different places. The initial bar is drawn just before
the loop, and the subsequent bars are drawn inside of the loop.

Having similar code like this in two places has some drawbacks. Obviously, one issue is having to write
the code twice. A more subtle problem is that the code has to be maintained in two different places. Should we
decide to change the color or other facets of the bars, we would have to make sure these changes occurred in
both places. Failing to keep related parts of the code in synch is a common problem in program maintenance.

Functions can be used to reduce code duplication and make programs more understandable and easier to
maintain. Before fixing up the future value program, let’s take look at what functions have to offer.

6.2 Functions, Informally

You can think of a function as a subprogram—a small program inside of a program. The basic idea of a
function is that we write a sequence of statements and give that sequence a name. The instructions can then
be executed at any point in the program by referring to the function name.

The part of the program that creates a function is called a function definition. When a function is
subsequently used in a program, we say that the definition is called or invoked. A single function definition
may be called at many different points of a program.

Let’s take a concrete example. Suppose you want to write a program that prints out the lyrics to the
“Happy Birthday” song. The standard lyrics look like this.

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear <insert-name>.
Happy birthday to you!

We’re going to play with this example in the interactive Python environment. You might want to fire up
Python and try some of this out for yourself.

A simple approach to this problem is to use four print statements. Here’s an interactive session that
creates a program for singing Happy Birthday to Fred.

>>> def main():
print "Happy birthday to you!"
print "Happy birthday to you!"
print "Happy birthday, dear Fred."
print "Happy birthday to you!"

We can then run this program to get our lyrics.

>>> main()
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred.
Happy birthday to you!

6.2. FUNCTIONS, INFORMALLY 87

Obviously, there is some duplicated code in this program. For such a simple program, that’s not a big
deal, but even here it’s a bit annoying to keep retyping the same line. Let’s introduce a function that prints
the lyrics of the first, second, and fourth lines.

>>> def happy():
print "Happy birthday to you!"

We have defined a new function called happy. Here is an example of what it does.

>>> happy()
Happy birthday to you!

Invoking the happy command causes Python to print a line of the song.
Now we can redo the verse for Fred using happy. Let’s call our new version singFred.

>>> def singFred():
happy()
happy()
print "Happy birthday, dear Fred."
happy()

This version required much less typing, thanks to the happy command. Let’s try printing the lyrics for Fred
just to make sure it works.

>>> singFred()
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred.
Happy birthday to you!

So far, so good. Now suppose that it’s also Lucy’s birthday, and we want to sing a verse for Fred followed
by a verse for Lucy. We’ve already got the verse for Fred; we can prepare one for Lucy as well.

>>> def singLucy():
happy()
happy()
print "Happy birthday, dear Lucy."
happy()

Now we can write a main program that sings to both Fred and Lucy.

>>> def main():
singFred()
print
singLucy()

The bare print between the two function calls puts a space between the verses in our output. And here’s
the final product in action.

>>> main()
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred.
Happy birthday to you!

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Lucy.
Happy birthday to you!

88 CHAPTER 6. DEFINING FUNCTIONS

Well now, that certainly seems to work, and we’ve removed some of the duplication by defining the
happy function. However, something still doesn’t feel quite right. We have two functions, singFred and
singLucy, that are almost identical. Following this approach, adding a verse for Elmer would have us
create a singElmer function that looks just like those for Fred and Lucy. Can’t we do something about the
proliferation of verses?

Notice that the only difference between singFred and singLucy is the name at the end of the third
print statement. The verses are exactly the same except for this one changing part. We can collapse these
two functions together by using a parameter. Let’s write a generic function called sing.

>>> def sing(person):
happy()
happy()
print "Happy Birthday, dear", person + "."
happy()

This function makes use of a parameter named person. A parameter is a variable that is initialized when
the function is called. We can use the sing function to print a verse for either Fred or Lucy. We just need to
supply the name as a parameter when we invoke the function.

>>> sing("Fred")
Happy birthday to you!
Happy birthday to you!
Happy Birthday, dear Fred.
Happy birthday to you!

>>> sing("Lucy")
Happy birthday to you!
Happy birthday to you!
Happy Birthday, dear Lucy.
Happy birthday to you!

Let’s finish with a program that sings to all three of our birthday people.

>>> def main():
sing("Fred")
print
sing("Lucy")
print
sing("Elmer")

It doesn’t get much easier than that.
Here is the complete program as a module file.

happy.py

def happy():
print "Happy Birthday to you!"

def sing(person):
happy()
happy()
print "Happy birthday, dear", person + "."
happy()

def main():
sing("Fred")
print

6.3. FUTURE VALUE WITH A FUNCTION 89

sing("Lucy")
print
sing("Elmer")

6.3 Future Value with a Function

Now that you’ve seen how defining functions can help solve the code duplication problem, let’s return to
the future value graph. Recall the problem is that bars of the graph are printed at two different places in the
program.

The code just before the loop looks like this.

Draw bar for initial principal
bar = Rectangle(Point(0, 0), Point(1, principal))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

And the code inside of the loop is as follows.

bar = Rectangle(Point(year, 0), Point(year+1, principal))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

Let’s try to combine these two into a single function that draws a bar on the screen.
In order to draw the bar, we need some information. Specifically, we need to know what year the bar will

be for, how tall the bar will be, and what window the bar will be drawn in. These three values will be supplied
as parameters for the function. Here’s the function definition.

def drawBar(window, year, height):
Draw a bar in window for given year with given height
bar = Rectangle(Point(year, 0), Point(year+1, height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(window)

To use this function, we just need to supply values for the three parameters. For example, if win is a
GraphWin, we can draw a bar for year 0 and a principal of $2,000 by invoking drawBar like this.

drawBar(win, 0, 2000)

Incorporating the drawBar function, here is the latest version of our future value program.

futval_graph3.py
from graphics import *

def drawBar(window, year, height):
Draw a bar in window starting at year with given height
bar = Rectangle(Point(year, 0), Point(year+1, height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(window)

def main():
Introduction
print "This program plots the growth of a 10-year investment."

90 CHAPTER 6. DEFINING FUNCTIONS

Get principal and interest rate
principal = input("Enter the initial principal: ")
apr = input("Enter the annualized interest rate: ")

Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 320, 240)
win.setBackground("white")
win.setCoords(-1.75,-200, 11.5, 10400)
Text(Point(-1, 0), ’ 0.0K’).draw(win)
Text(Point(-1, 2500), ’ 2.5K’).draw(win)
Text(Point(-1, 5000), ’ 5.0K’).draw(win)
Text(Point(-1, 7500), ’ 7.5k’).draw(win)
Text(Point(-1, 10000), ’10.0K’).draw(win)

Draw bar for initial principal
drawBar(win, 0, principal)

Draw a bar for each subsequent year
for year in range(1, 11):

principal = principal * (1 + apr)
drawBar(win, year, principal)

raw_input("Press <Enter> to quit.")

You can see how drawBar has eliminated the duplicated code. Should we wish to change the appearance
of the bars in the graph, we only need to change the code in one spot, the definition of drawBar. Don’t worry
yet if you don’t understand every detail of this example. You still have some things to learn about functions.

6.4 Functions and Parameters: The Gory Details

You may be wondering about the choice of parameters for the drawBar function. Obviously, the year for
which a bar is being drawn and the height of the bar are the changeable parts in the drawing of a bar. But,
why is window also a parameter to this function? After all, we will be drawing all of the bars in the same
window; it doesn’t seem to change.

The reason for making window a parameter has to do with the scope of variables in function definitions.
Scope refers to the places in a program where a given variable may be referenced. Remember each function

is its own little subprogram. The variables used inside of one function are local to that function, even if they
happen to have the same name as variables that appear inside of another function.

The only way for a function to see a variable from another function is for that variable to be passed as a
parameter. Since the GraphWin (in the variable win) is created inside of main, it is not directly accessible
in drawBar. However, the window parameter in drawBar gets assigned the value of win from main
when drawBar is called. To see how this happens, we need to take a more detailed look at the function
invocation process.

A function definition looks like this.

def <name>(<formal-parameters>):
<body>

The name of the function must be an identifier, and formal-parameters is a (possibly empty) list of
variable names (also identifiers). The formal parameters, like all variables used in the function, are only
accessible in the body of the function. Variables with identical names elswhere in the program are distinct
from the formal parameters and variables inside of the function body.

A function is called by using its name followed by a list of actual parameters or arguments.

<name>(<actual-parameters>)

6.4. FUNCTIONS AND PARAMETERS: THE GORY DETAILS 91

When Python comes to a function call, it initiates a four-step process.

1. The calling program suspends at the point of the call.

2. The formal parameters of the function get assigned the values supplied by the actual parameters in the
call.

3. The body of the function is executed.

4. Control returns to the point just after where the function was called.

Returning to the Happy Birthday example, let’s trace through the singing of two verses. Here is part of
the body from main.

sing("Fred")
print
sing("Lucy")
...

When Python gets to sing("Fred"), execution of main is temporarily suspended. At this point, Python
looks up the definition of sing and sees that it has a single formal parameter,person. The formal parameter
is assigned the value of the actual, so it is as if we had executed this statement:

person = "Fred"

A snapshot of this situation is shown in Figure 6.1. Notice the variable person inside of sing has just been
initialized.

 sing("Fred")
 print
 sing("Lucy")

def main(): def sing(person):
 happy()
 happy()
 print "Happy birthday, dear", person + "."
 happy()

person = "Fred"

person: "Fred"

Figure 6.1: Illustration of control transferring to sing.

At this point, Python begins executing the body of sing. The first statement is another function call, this
one to happy. Python suspends execution of sing and transfers control to the called function. The body of
happy consists of a single print. This statement is executed, and then control returns to where it left off
in sing. Figure 6.2 shows a snapshot of the execution so far.

 sing("Fred")
 print
 sing("Lucy")

def main(): def sing(person):
 happy()
 happy()
 print "Happy birthday, dear", person + "."
 happy()

def happy():
 print "Happy Birthday to you!"person = "Fred"

person: "Fred"

Figure 6.2: Snaphot of completed call to happy.

Execution continues in this manner with Python making two more side trips back to happy to complete
the execution of sing. When Python get to the end of sing, control then returns to main and continues
immediately after the function call. Figure 6.3 shows where we are at that point. Notice that the person

92 CHAPTER 6. DEFINING FUNCTIONS

 sing("Fred")
 print
 sing("Lucy")

def main(): def sing(person):
 happy()
 happy()
 print "Happy birthday, dear", person + "."
 happy()

person = "Fred"

Figure 6.3: Snaphot of completed call to sing.

variable in sing has disappeared. The memory occupied by local function variables is reclaimed when the
function finishes. Local variables do not retain any values from one function execution to the next.

The next statement to execute is the bare print statement in main. This produces a blank line in the
output. Then Python encounters another call to sing. As before, control transfers to the function definition.
This time the formal parameter is "Lucy". Figure 6.4 shows the situation as sing begins to execute for the
second time.

 sing("Fred")
 print
 sing("Lucy")

def main(): def sing(person):
 happy()
 happy()
 print "Happy birthday, dear", person + "."
 happy()

pers
on =

 "Lu
cy"

person: "Lucy"

Figure 6.4: Snaphot of second call to sing.

Now we’ll fast forward to the end. The function body of sing is executed for Lucy (with three side trips
through happy) and control returns to main just after the point of the function call. Now we have reached
the bottom of our code fragment, as illustrated by Figure 6.5. These three statements in main have caused
sing to execute twice and happy to execute six times. Overall, nine total lines of output were generated.

 sing("Fred")
 print
 sing("Lucy")

def main(): def sing(person):
 happy()
 happy()
 print "Happy birthday, dear", person + "."
 happy()

pers
on =

 "Lu
cy"

Figure 6.5: Completion of second call to sing.

Hopefully you’re getting the hang of how function calls actually work. One point that this example did
not address is the use of multiple parameters. When a function definition has several parameters, the actual
parameters are matched up with the formal parameters by position. The first actual parameter is assigned to
the first formal paramter, the second actual is assigned to the second formal, etc.

As an example, look again at the use of the drawBar function from the future value program. Here is
the call to draw the initial bar.

drawBar(win, 0, principal)

When Python transfers control to drawBar, these parameters are matched up to the formal parameters in
the function heading.

def drawBar(window, year, height):

6.5. FUNCTIONS THAT RETURN VALUES 93

The net effect is as if the function body had been prefaced with three assignment statements.

window = win
year = 0
height = principal

You must always be careful when calling a function that you get the actual parameters in the correct order to
match the function definition.

6.5 Functions that Return Values

You have seen that parameter passing provides a mechanism for initializing the variables in a function. In a
way, parameters act as inputs to a function. We can call a function many times and get different results by
changing the input parameters.

Sometimes we also want to get information back out of a function. This is accomplished by having
functions return a value to the caller. You have already seen numerous examples of this type of function. For
example, consider this call to the sqrt function from the math library.

discRt = math.sqrt(b*b - 4*a*c)

Here the value of b*b - 4*a*c is the actual parameter of math.sqrt. This function call occurs on
the right side of an assignment statement; that means it is an expression. The math.sqrt function must
somehow produce a value that is then assigned to the variable discRt. Technically, we say that sqrt
returns the square root of its argument.

It’s very easy to write functions that return values. Here’s an example value-returning function that does
the opposite of sqrt; it returns the square of its argument.

def square(x):
return x * x

The body of this function consists of a single return statement. When Python encounters return, it exits
the function and returns control to the point where the function was called. In addition, the value(s) provided
in the return statement are sent back to the caller as an expression result.

We can use our square function any place that an expression would be legal. Here are some interactive
examples.

>>> square(3)
9
>>> print square(4)
16
>>> x = 5
>>> y = square(x)
>>> print y
25
>>> print square(x) + square(3)
34

Let’s use the square function to write another function that finds the distance between two points. Given
two points

�
x1 � y1 � and

�
x2 � y2 � , the distance between them is calculated from the Pythagorean Theorem as

� �
x2 � x1 � 2 �

�
y2 � y1 � 2. Here is a Python function to compute the distance between two Point objects.

def distance(p1, p2):
dist = math.sqrt(square(p2.getX() - p1.getX())

+ square(p2.getY() - p1.getY())
return dist

Using the distance function, we can augment the interactive triangle program from last chapter to
calculate the perimeter of the triangle. Here’s the complete program:

94 CHAPTER 6. DEFINING FUNCTIONS

Program: triangle2.py
from graphics import *

def square(x):
return x * x

def distance(p1, p2):
dist = math.sqrt(square(p2.getX() - p1.getX())

+ square(p2.getY() - p1.getY())
return dist

def main():
win = GraphWin("Draw a Triangle")
win.setCoords(0.0, 0.0, 10.0, 10.0)
message = Text(Point(5, 0.5), "Click on three points")
message.draw(win)

Get and draw three vertices of triangle
p1 = win.getMouse()
p1.draw(win)
p2 = win.getMouse()
p2.draw(win)
p3 = win.getMouse()
p3.draw(win)

Use Polygon object to draw the triangle
triangle = Polygon(p1,p2,p3)
triangle.setFill("peachpuff")
triangle.setOutline("cyan")
triangle.draw(win)

Calculate the perimeter of the triangle
perim = distance(p1,p2) + distance(p2,p3) + distance(p3,p1)
message.setText("The perimeter is: %0.2f" % perim)

Wait for another click to exit
win.getMouse()

You can see how distance is called three times in one line to compute the perimeter of the triangle. Using
a function here saves quite a bit of tedious coding.

Sometimes a function needs to return more than one value. This can be done by simply listing more than
one expression in the return statement. As a silly example, here is a function that computes both the sum
and the difference of two numbers.

def sumDiff(x,y):
sum = x + y
diff = x - y
return sum, diff

As you can see, this return hands back two values. When calling this function, we would place it in a
simultaneous assignment.

num1, num2 = input("Please enter two numbers (num1, num2) ")
s, d = sumDiff(num1, num2)
print "The sum is", s, "and the difference is", d

6.6. FUNCTIONS AND PROGRAM STRUCTURE 95

As with parameters, when multiple values are returned from a function, they are assigned to variables by
position. In this example, s will get the first value listed in the return (sum), and d will get the second
value (diff).

That’s just about all there is to know about functions in Python. There is one “gotcha” to warn you about.
Technically, all functions in Python return a value, regardless of whether or not the function actually contains
a return statement. Functions without a return always hand back a special object, denoted None.
This object is often used as a sort of default value for variables that don’t currently hold anything useful. A
common mistake that new (and not-so-new) programmers make is writing what should be a value-returning
function but forgetting to include a return statement at the end.

Suppose we forget to include the return statement at the end of the distance function.

def distance(p1, p2):
dist = math.sqrt(square(p2.getX() - p1.getX())

+ square(p2.getY() - p1.getY())

Running the revised triangle program with this version of distance generates this Python error message.

Traceback (innermost last):
File "<stdin>", line 1, in ?
File "triangle2err.py", line 44, in ?
main()

File "triangle2err.py", line 37, in main
perim = distance(p1,p2) + distance(p2,p3) + distance(p3,p1)

TypeError: bad operand type(s) for +

The problem here is that this version of distance does not return a number, but always hands back the
value None. Addition is not defined for None, and so Python complains. If your value-returning functions
are producing strange error messages, check to make sure you remembered to include the return.

6.6 Functions and Program Structure

So far, we have been discussing functions as a mechanism for reducing code duplication, thus shortening
and simplifying our programs. Surprisingly, functions are often used even when doing so actually makes the
program longer. A second reason for using functions is to make programs more modular.

As the algorithms that you design get more complex, it gets more and more difficult to make sense out
of programs. Humans are pretty good at keeping track of eight to ten things at a time. When presented
with an algorithm that is hundreds of lines long, even the best programmers will throw up their hands in
bewilderment.

One way to deal with this complexity is to break an algorithm into smaller subprograms, each of which
makes sense on its own. I’ll have a lot more to say about this later when we discuss program design in
Chapter 9. For now, we’ll just take a look at an example. Let’s return to the future value problem one more
time. Here is the main program as we left it:

def main():
Introduction
print "This program plots the growth of a 10-year investment."

Get principal and interest rate
principal = input("Enter the initial principal: ")
apr = input("Enter the annualized interest rate: ")

Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 320, 240)
win.setBackground("white")
win.setCoords(-1.75,-200, 11.5, 10400)

96 CHAPTER 6. DEFINING FUNCTIONS

Text(Point(-1, 0), ’ 0.0K’).draw(win)
Text(Point(-1, 2500), ’ 2.5K’).draw(win)
Text(Point(-1, 5000), ’ 5.0K’).draw(win)
Text(Point(-1, 7500), ’ 7.5k’).draw(win)
Text(Point(-1, 10000), ’10.0K’).draw(win)

Draw bar for initial principal
drawBar(win, 0, principal)

Draw a bar for each subsequent year
for year in range(1, 11):

principal = principal * (1 + apr)
drawBar(win, year, principal)

raw_input("Press <Enter> to quit.")

Although we have already shortened this algorithm through the use of the drawBar function, it is still
long enough to make reading through it awkward. The comments help to explain things, but, not to put too
fine a point on it, this function is just too long. One way to make the program more readable is to move some
of the details into a separate function. For example, there are eight lines in the middle that simply create the
window where the chart will be drawn. We could put these steps into a value returning function.

def createLabeledWindow():
Returns a GraphWin with title and labels drawn
window = GraphWin("Investment Growth Chart", 320, 240)
window.setBackground("white")
window.setCoords(-1.75,-200, 11.5, 10400)
Text(Point(-1, 0), ’ 0.0K’).draw(window)
Text(Point(-1, 2500), ’ 2.5K’).draw(window)
Text(Point(-1, 5000), ’ 5.0K’).draw(window)
Text(Point(-1, 7500), ’ 7.5k’).draw(window)
Text(Point(-1, 10000), ’10.0K’).draw(window)
return window

As its name implies, this function takes care of all the nitty-gritty details of drawing the initial window. It is
a self-contained entity that performs this one well-defined task.

Using our new function, the main algorithm seems much simpler.

def main():
print "This program plots the growth of a 10-year investment."

principal = input("Enter the initial principal: ")
apr = input("Enter the annualized interest rate: ")

win = createLabeledWindow()
drawBar(win, 0, principal)
for year in range(1, 11):

principal = principal * (1 + apr)
drawBar(win, year, principal)

raw_input("Press <Enter> to quit.")

Notice that I have removed the comments; the intent of the algorithm is now clear. With suitably named
functions, the code has become nearly self-documenting.

Here is the final version of our future value program:

6.7. EXERCISES 97

futval_graph4.py

from graphics import *

def createLabeledWindow():
window = GraphWin("Investment Growth Chart", 320, 240)
window.setBackground("white")
window.setCoords(-1.75,-200, 11.5, 10400)
Text(Point(-1, 0), ’ 0.0K’).draw(window)
Text(Point(-1, 2500), ’ 2.5K’).draw(window)
Text(Point(-1, 5000), ’ 5.0K’).draw(window)
Text(Point(-1, 7500), ’ 7.5k’).draw(window)
Text(Point(-1, 10000), ’10.0K’).draw(window)
return window

def drawBar(window, year, height):
bar = Rectangle(Point(year, 0), Point(year+1, height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(window)

def main():
print "This program plots the growth of a 10 year investment."

principal = input("Enter the initial principal: ")
apr = input("Enter the annualized interest rate: ")

win = createLabeledWindow()
drawBar(win, 0, principal)
for year in range(1, 11):

principal = principal * (1 + apr)
drawBar(win, year, principal)

raw_input("Press <Enter> to quit.")
win.close()

Although this version is longer than the previous version, experienced programmers would find it much easier
to understand. As you get used to reading and writing functions, you too will learn to appreciate the elegance
of more modular code.

6.7 Exercises

1. In your own words, describe the two motivations for defining functions in your programs.

2. We have been thinking about computer programs as sequences of instructions where the computer
methodically executes one instruction and then moves on to the next one. Do programs that contain
functions fit this model? Explain your answer.

3. Parameters are an important concept in defining functions.

(a) What is the purpose of parameters?

(b) What is the difference between a formal parameter and an actual parameter?

(c) In what ways are parameters similar to and different from ordinary variables?

98 CHAPTER 6. DEFINING FUNCTIONS

4. Functions can be thought of as miniature (sub)programs inside of other programs. Like any other
program, we can think of functions as having input and output to communicate with the main program.

(a) How does a program provide “input” to one of its functions?

(b) How does a function provide “output” to the program?

5. Consider this very simple function:

def cube(x):
answer = x * x * x
return answer

(a) What does this function do?

(b) Show how a program could use this function to print the value of y3, assuming y is a variable.

(c) Here is a fragment of a program that uses this function:

answer = 4
result = cube(3)
print answer, result

The output from this fragment is 4 27. Explain why the output is not 27 27, even though cube
seems to change the value of answer to 27.

6. Write a program to print the lyrics of the song “Old MacDonald.” Your program should print the lyrics
for five different animals, similar to the example verse below.

Old MacDonald had a farm, Ee-igh, Ee-igh, Oh!
And on that farm he had a cow, Ee-igh, Ee-igh, Oh!
With a moo, moo here and a moo, moo there.
Here a moo, there a moo, everywhere a moo, moo.
Old MacDonald had a farm, Ee-igh, Ee-igh, Oh!

7. Write a program to print the lyrics for ten verses of “The Ants Go Marching.” A couple sample verses
are given below. You may choose your own activity for the little one in each verse, but be sure to
choose something that makes the rhyme work (or almost work).

The ants go marching one by one, hurrah! hurrah!
The ants go marching one by one, hurrah! hurrah!
The ants go marching one by one.
The little one stops to suck his thumb
And they all go marching down...
In the gound...
To get out....
Of the rain.
Boom! Boom! Boom!

The ants go marching two by two, hurrah! hurrah!
The ants go marching two by two, hurrah! hurrah!
The ants go marching two by two.
The little one stops to tie his shoe
And they all go marching down...
In the ground...
To get out...
Of the rain.
Boom! Boom! Boom!

6.7. EXERCISES 99

8. Redo any of your favorite programming problems from previous chapters and use a function or two
to encapsulate the calculations. For example, a program to compute the volume and surface area of a
sphere could use functions sphereVol and sphereArea to do the calculations.

9. Redo some more problems....

100 CHAPTER 6. DEFINING FUNCTIONS

Chapter 7

Control Structures, Part 1

So far, we have viewed computer programs as sequences of instructions that are followed one after the
other. Sequencing is a fundamental concept of programming, but alone, it is not sufficient to solve every
problem. Often it is necessary to alter the sequential flow of a program to suit the needs of a particular
situation. This is done with special statements known as control structures. In this chapter, we’ll take a
look at decision structures, which are statements that allow a program to execute different sequences of
instructions for different cases, effectively allowing the program to “choose” an appropriate course of action.

7.1 Simple Decisions

7.1.1 Example: Temperature Warnings

Let’s start by getting the computer to make a simple decision. For an easy example, we’ll return to the
Celsius to Fahrenheit temperature conversion program from Chapter 2. Remember, this was written by Suzie
Programmer to help her figure out how to dress each morning in Europe. Here is the program as we left it:

convert.py
A program to convert Celsius temps to Fahrenheit
by: Suzie Programmer

def main():
celsius = input("What is the Celsius temperature? ")
fahrenheit = 9.0 / 5.0 * celsius + 32
print "The temperature is", fahrenheit, "degrees fahrenheit."

main()

This is a fine program as far as it goes, but we want to enhance it. Suzie Programmer is not a morning
person, and even though she has a program to convert the temperatures, sometimes she does not pay very
close attention to the results. Our enhancement to the program will ensure that when the temperatures are
extreme, the program prints out a suitable warning so that Suzie takes notice.

The first step is to fully specify the enhancement. An extreme temperature is either quite hot or quite cold.
Let’s say that any temperature over 90 degrees Fahrenheit deserves a heat warning, and a temperature under
30 degrees warrants a cold warning. With this specification in mind, we can design an enhanced algorithm.

Input the temperature in degrees Celsius (call it celsius)
Calculate fahrenheit as 9/5 celsius + 32
Output fahrenheit
if fahrenheit > 90

print a heat warning
if fahrenheit < 30

print a cold warning

101

102 CHAPTER 7. CONTROL STRUCTURES, PART 1

This new design has two simple decisions at the end. The indentation indicates that a step should be
performed only if the condition listed in the previous line is met. The idea here is that the decision introduces
an alternative flow of control through the program. The exact set of steps taken by the algorithm will depend
on the value of fahrenheit.

Figure 7.1 is a flowchart showing the possible paths that can be taken through the algorithm. The diamond
boxes show conditional decisions. If the condition is false, control passes to the next statement in the sequence
(the one below). If the condition holds, however, control transfers to the instructions in the box to the right.
Once these instructions are done, control then passes to the next statement.

yes

no

yes

no

fahrenheit < 30?

fahrenheit > 90?

Print a Heat Warning

Print a Cold Warning

Print Fahrenheit
Farenheit = 9/5 * celsius + 32
Input Celsius Temperature

Figure 7.1: Flowchart of temperature conversion program with warnings.

Here is how the new design translates into Python code:

convert2.py
A program to convert Celsius temps to Fahrenheit.
This version issues heat and cold warnings.

def main():
celsius = input("What is the Celsius temperature? ")
fahrenheit = 9.0 / 5.0 * celsius + 32
print "The temperature is", fahrenheit, "degrees fahrenheit."

Print warnings for extreme temps
if fahrenheit > 90:

print "It’s really hot out there, be careful!"
if fahrenheit < 30:

print "Brrrrr. Be sure to dress warmly!"

main()

You can see that the Python if statement is used to implement the decision.
The form of the if is very similar to the pseudo-code in the algorithm.

if <condition>:
<body>

7.1. SIMPLE DECISIONS 103

The body is just a sequence of one or more statements indented under the if heading. In convert2.py
there are two if statements, both of which have a single statement in the body.

The semantics of the if should be clear from the example above. First, the condition in the heading
is evaluated. If the condition is true, the sequence of statements in the body is executed, and then control
passes to the next statement in the program. If the condition is false, the statements in the body are skipped.
Figure 7.2 shows the semantics of the if as a flowchart. Notice that the body of the if either executes or

yes

no

<condition> true?

<Body>

Figure 7.2: Control flow of simple if-statement

not depending on the condition. In either case, control then passes to the next statement after the if. This is
a one-way or simple decision.

7.1.2 Forming Simple Conditions

One point that has not yet been discussed is exactly what a condition looks like. For the time being, our
programs will use simple conditions that compare the values of two expressions.

<expr> <relop> <expr>

<relop> is short for relational operator. That’s just a fancy name for the mathematical concepts like “less
than” or “equal to.” There are six relational operators in Python, shown in the following table.

Python Mathematics Meaning

� � Less than
� � � Less than or equal to

� � � Equal to
� � � Greater than or equal to
� � Greater than

! � �� Not equal to

Notice especially the use of � � for equality. Since Python uses the � sign to indicate an assignment state-
ment, a different symbol is required for the concept of equality. A common mistake in Python programs is
using � in conditions, where a � � is required.

Conditions may compare either numbers or strings. When comparing strings, the ordering is lexico-
graphic. Basically, this means that strings are put in alphabetic order according to the underlying ASCII
codes. So all upper-case letters come before lower case letters (e.g., “Bbbb” comes before “aaaa”, since “B”
precedes “a”).

I should mention that conditions are actually a type of expression, called a Boolean expression, after
George Boole, a 19th century English mathematician. When a Boolean expression is evaluated, it produces
a value of either true (the condition holds) or false (it does not hold). In Python, conditions return int values.
A true condition produces a 1, while a false condition produces a 0. Here are a few examples:

104 CHAPTER 7. CONTROL STRUCTURES, PART 1

>>> 3 < 4
1
>>> 3 * 4 < 3 + 4
0
>>> "hello" == "hello"
1
>>> "hello" < "hello"
0
>>> "Hello" < "hello"
1

7.1.3 Example: Conditional Program Execution

Back in Chapter 1, I mentioned that there are several different ways of running Python programs. Some
Python module files are designed to be run directly. These are usually referred to as “programs” or “scripts.”
Other Python modules are designed primarily to be imported and used by other programs, these are often
called “libraries.” Sometimes we want to create a sort of hybrid module that can be used both as a stand-
alone program and as a library that can be imported by other programs.

So far, all of our programs have had a line at the bottom to invoke the main function.

main()

As you know, this is what actually starts a program running. These programs are suitable for running directly.
In a windowing environment, you might run a file by (double-)clicking its icon. Or you might type a command
like python <myfile>.py.

Since Python evaluates the lines of a module during the import process, our current programs also run
when they are imported into either an interactive Python session or into another Python program. Generally,
it is nicer not to have modules run as they are imported. When testing a program interactively, the usual
approach is to first import the module and then call its main (or some other function) each time we want to
run it.

In a program that can be either imported (without running) or run directly, the call to main at the bottom
must be made conditional. A simple decision should do the trick.

if <condition>:
main()

We just need to figure out a suitable condition.
Whenever a module is imported, Python sets a special variable in the module called name to be the

name of the imported module. Here is an example interaction showing what happens with the math library.

>>> import math
>>> math.__name__
’math’

You can see that, when imported, the name variable inside the math module is assigned the string
’math’.

However, when Python code is being run directly (not imported), Python sets the value of name to be
’ main ’. To see this in action, you just need to start Python and look at the value.

>>> __name__
’__main__’

So, if a module is imported, the code in that module will see a variable called name whose value is the
name of the module. When a file is run directly, the code will see that name has the value ’ main ’.
A program can determine how it is being used by inspecting this variable.

Putting the pieces together, we can change the final lines of our programs to look like this:

7.2. TWO-WAY DECISIONS 105

if __name__ == ’__main__’:
main()

This guarantees that main will automatically run when the program is invoked directly, but it will not run
if the module is imported. You will see a line of code similar to this at the bottom of virtually every Python
program.

7.2 Two-Way Decisions

Now that we have a way to selectively execute certain statements in a program using decisions, it’s time to
go back and spruce up the quadratic equation solver from Chapter 3. Here is the program as we left it:

quadratic.py
A program that computes the real roots of a quadratic equation.
Illustrates use of the math library.
Note: this program crashes if the equation has no real roots.

import math # Makes the math library available.

def main():
print "This program finds the real solutions to a quadratic"
print

a, b, c = input("Please enter the coefficients (a, b, c): ")

discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)

print
print "The solutions are:", root1, root2

main()

As noted in the comments, this program crashes when it is given coefficients of a quadratic equation that
has no real roots. The problem with this code is that when b2 � 4ac is less than 0, the program attempts to
take the square root of a negative number. Since negative numbers do not have real roots, the math library
reports an error. Here’s an example.

>>> import quadratic
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1,2,3
Traceback (innermost last):

File "<stdin>", line 1, in ?
File "quadratic.py", line 21, in ?
main()

File "quadratic.py", line 14, in main
discRoot = math.sqrt(b * b - 4 * a * c)

OverflowError: math range error

We can use a decision to check for this situation and make sure that the program can’t crash. Here’s a
first attempt:

quadratic2.py
import math

106 CHAPTER 7. CONTROL STRUCTURES, PART 1

def main():
print "This program finds the real solutions to a quadratic\n"

a, b, c = input("Please enter the coefficients (a, b, c): ")

dicrim = b * b - 4 * a * c
if discrim >= 0:

discRoot = math.sqrt(discrim)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print "\nThe solutions are:", root1, root2

This version first computes the value of the discriminant (b2 � 4ac) and then checks to make sure it is not
negative. Only then does the program proceed to take the square root and calculate the solutions. This
program will never attempt to call math.sqrt when discrim is negative.

Incidently, you might also notice that I have replaced the bare print statements from the original version
of the program with embedded newlines to put whitespace in the output; you hadn’t yet learned about

�
n the

first time we encountered this program.
Unfortunately, this updated version is not really a complete solution. Study the program for a moment.

What happens when the equation has no real roots? According to the semantics for a simple if, when b*b
- 4*a*c is less than zero, the program will simply skip the calculations and go to the next statement. Since
there is no next statement, the program just quits. Here’s what happens in an interactive session.

>>> quadratic2.main()
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1,2,3
>>>

This is almost worse than the previous version, because it does not give the user any indication of what
went wrong; it just leaves them hanging. A better program would print a message telling the user that their
particular equation has no real solutions. We could accomplish this by adding another simple decision at the
end of the program.

if discrim < 0:
print "The equation has no real roots!"

This will certainly solve our problem, but this solution just doesn’t feel right. We have programmed a
sequence of two decisions, but the two outcomes are mutually exclusive. If discrim >= 0 is true then
discrim < 0 must be false and vice versa. We have two conditions in the program, but there is really only
one decision to make. Based on the value of discrim The program should either print that there are no
real roots or it should calculate and display the roots. This is an example of a two-way decision. Figure 7.3
illustrates the situation.

In Python, a two-way decision can be implemented by attaching an else clause onto an if. The result
is called an if-else statement.

if <condition>:
<statements>

else:
<statements>

When the Python interpreter encounters this structure, it will first evaluate the condition. If the condition is
true, the statements under the if are executed. If the condition is false, the statements under the else are
executed. In either case, control then passes to the statement following the if-else.

Using a two-way decision in the quadratic solver yields a more elegant solution.

7.3. MULTI-WAY DECISIONS 107

yesno

Print "no roots"Calculate roots

discrim < 0 ?

Figure 7.3: Quadratic solver as a two-way decision.

quadratic3.py
import math

def main():
print "This program finds the real solutions to a quadratic\n"
a, b, c = input("Please enter the coefficients (a, b, c): ")

discrim = b * b - 4 * a * c
if discrim < 0:

print "\nThe equation has no real roots!"
else:

discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print
print "\nThe solutions are:", root1, root2

This program fits the bill nicely. Here is a sample session that runs the new program twice.

>>> quadratic3.main()
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1,2,3

The equation has no real roots!
>>> quadratic3.main()
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 2,4,1

The solutions are: -0.292893218813 -1.70710678119

7.3 Multi-Way Decisions

The newest version of the quadratic solver is certainly a big improvement, but it still has some quirks. Here
is another example run.

108 CHAPTER 7. CONTROL STRUCTURES, PART 1

>>> quadratic3.main()
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1, 2, 1

The solutions are: -1.0 -1.0

This is technically correct; the given coefficients produce an equation that has a double root at -1. However,
the output might be confusing to some users. It looks like the program has mistakenly printed the same
number twice. Perhaps the program should be a bit more informative to avoid confusion.

The double-root situation occurs when discrim is exactly 0. In this case, discRoot is also 0, and
both roots have the value � b

2a . If we want to catch this special case, it looks like our program actually needs a
three-way decision. Here’s a quick sketch of the design.

...
Check the value of discrim

when < 0: handle the case of no roots
when = 0: handle the case of a double root
when > 0: handle the case of two distinct roots.

One way to code this algorithm is to use two if-else statements. The body of an if or else clause
can contain any legal Python statements, including other if or if-else statements. Putting one compound
statement inside of another is called nesting. Here’s a fragment of code that uses nesting to achieve a
three-way decision :

if discrim < 0:
print "Equation has no real roots"

else:
if discrim == 0:

root = -b / (2 * a)
print "There is a double root at", root

else:
Do stuff for two roots

If you trace through this code carefully, you will see that there are exactly three possible paths. The
sequencing is determined by the value of discrim. A flowchart of this solution is shown in Figure 7.4. You
can see that the top-level structure is just an if-else. (Treat the dashed box as one big statement.) The
dashed box contains the second if-else nested comfortably inside the else part of the top-level decision.

Once again, we have a working solution, but the implementation doesn’t feel quite right. We have finessed
a three-way decision by using two two-way decisions. The resulting code does not reflect the true three-fold
decision of the original problem. Imagine if we needed to make a five-way decision using this technique. The
if-else structures would nest four levels deep, and the Python code would march off the right-hand edge
of the page.

There is another way to write multi-way decisions in Python that preserves the semantics of the nested
structures but gives it a more appealing look. The idea is to combine an else followed immediately by an
if into a single clause called an elif.

if <condition1>:
<case1 statements>

elif <condition2>:
<case2 statements>

elif <condition3>:
<case3 statements>

...
else:

<default statements>

7.4. EXCEPTION HANDLING 109

discrim < 0 ?

Print "no roots"

noyes

yes no

Do Double Root Do Unique Roots

discrim == 0 ?

Figure 7.4: Three-way decision for quadratic solver using nested if-else.

This form is used to set off any number of mutually exclusive code blocks. Python will evaluate each condi-
tion in turn looking for the first one that is true. If a true condition is found, the statements indented under
that condition are executed, and control passes to the next statement after the entire if-elif-else. If
none of the conditions are true, the statements under the else are performed. The else clause is optional;
if omitted, it is possible that no indented statement block will be executed.

Using an if-elif-else to show the three-way decision in our quadratic solver yields a nicely finished
program.

quadratic4.py
import math

def main():
print "This program finds the real solutions to a quadratic\n"

a, b, c = input("Please enter the coefficients (a, b, c): ")

discrim = b * b - 4 * a * c
if discrim < 0:

print "\nThe equation has no real roots!"
elif discrim == 0:

root = -b / (2 * a)
print "\nThere is a double root at", root

else:
discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print "\nThe solutions are:", root1, root2

7.4 Exception Handling

Our quadratic program uses decision structures to avoid taking the square root of a negative number and
generating a run-time error. This is a common pattern in many programs: using decisions to protect against

110 CHAPTER 7. CONTROL STRUCTURES, PART 1

rare but possible errors.
In the case of the quadratic solver, we checked the data before the call to the sqrt function. Sometimes

functions themselves check for possible errors and return a special value to indicate that the operation was
unsuccessful. For example, a different square root operation might return a negative number (say -1) to
indicate an error. Since the square roots of real numbers are never negative, this value could be used to signal
that an error had occurred. The program would check the result of the operation with a decision.

discRt = otherSqrt(b*b - 4*a*c)
if discRt < 0:

print "No real roots."
else:

...

Sometimes programs become so peppered with decisions to check for special cases that the main algo-
rithm for handling the run-of-the-mill cases seems completely lost. Programming language designers have
come up with mechanisms for exception handling that help to solve this design problem. The idea of an
exception handling mechanism is that the programmer can write code that catches and deals with errors that
arise when the program is running. Rather than explicitly checking that each step in the algorithm was suc-
cessful, a program with exception handling can in essence say “Do these steps, and if any problem crops up,
handle it this way.”

We’re not going to discuss all the details of the Python exception handling mechanism here, but I do want
to give you a concrete example so you can see how exception handling works and understand programs that
use it. In Python, exception handling is done with a special control structure that is similar to a decision.
Let’s start with a specific example and then take a look at the general approach.

Here is a version of the quadratic program that uses Python’s exception mechanism to catch potential
errors in the math.sqrt function.

quadratic5.py
import math

def main():
print "This program finds the real solutions to a quadratic\n"

try:
a, b, c = input("Please enter the coefficients (a, b, c): ")
discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print "\nThe solutions are:", root1, root2

except OverflowError:
print "\nNo real roots"

Notice that this is basically the very first version of the quadratic program with the addition of a try...except
around the heart of the program. A try statement has the general form:

try:
<body>

except <ErrorType>:
<handler>

When Python encounters a try statement, it attempts to execute the statements inside the body. If these
statements execute without error, control then passes to the next statement after the try...except. If an
error occurs somewhere in the body, Python looks for an except clause with a matching error type. If a
suitable except is found, the handler code is executed.

The original program without the exception-handling produced the following error.

7.4. EXCEPTION HANDLING 111

Traceback (innermost last):
File "<stdin>", line 1, in ?
File "quadratic.py", line 13, in ?
discRoot = math.sqrt(b * b - 4 * a * c)

OverflowError: math range error

The last line of this error message indicates the type of error that was generated, namely an OverflowError.
The updated version of the program provides an except clause to catch the OverflowError.

Here is the error handling version in action:

This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1,2,3

No real roots

Instead of crashing, the exception handler catches the error and prints a message indicating that the equation
does not have real roots.

The nice thing about the try...except statement is that it can be used to catch any kind of error, even
ones that might be difficult to test for, and hopefully, provide a graceful exit. For example, in the quadratic
solver, there are lots of other things that could go wrong besides having a bad set of coefficients. If the user
fails to type the correct number of inputs, the program generates a ValueError. If the user accidently
types an identifier instead of a number, the program generates a NameError. If the user types in a valid
Python expression that produces non-numeric results, the program generates a TypeError. A single try
statement can have multiple except clauses to catch various possible classes of errors.

Here’s one last version of the program designed to robustly handle any possible errors in the input.

quadratic6.py
import math

def main():
print "This program finds the real solutions to a quadratic\n"

try:
a, b, c = input("Please enter the coefficients (a, b, c): ")
discRoot = math.sqrt(b * b - 4 * a * c)
root1 = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print "\nThe solutions are:", root1, root2

except OverflowError:
print "\nNo real roots"

except ValueError:
print "\nYou didn’t give me three coefficients."

except NameError:
print "\nYou didn’t enter three numbers"

except TypeError:
print "\nYour inputs were not all numbers"

except:
print "\nSomething went wrong, sorry!"

The multiple excepts are similar to elifs. If an error occurs, Python will try each except in turn
looking for one that matches the type of error. The bare except at the bottom acts like an else and will
be used if none of the others match. If there is no default at the bottom and none of the except types match
the error, then the program crashes and Python reports the error.

You can see how the try...except statement allows us to write really bullet-proof programs. Whether
you need to go to this much trouble depends on the type of program that you are writing. In your beginning

112 CHAPTER 7. CONTROL STRUCTURES, PART 1

programs, you might not worry too much about bad input; however, professional quality software should do
whatever is feasible to shield users from unexpected results.

7.5 Study in Design: Max of Three

Now that we have decisions that can alter the control flow of a program, our algorithms are liberated from
the monotony of step-by-step, strictly sequential processing. This is both a blessing and a curse. The positive
side is that we can now develop more sophisticated algorithms, as we did for our quadratic solver. The
negative side is that designing these more sophisticated algorithms is much harder. In this section, we’ll step
through the design of a more difficult decision problem to illustrate some of the challenge and excitement of
the design process.

Suppose we need an algorithm to find the largest of three numbers. This algorithm could be part of a
larger problem such as determining grades or computing taxes, but we are not interested in the final details,
just the crux of the problem. That is, how can a computer determine which of three user inputs is the largest?
Here is a program outline. We need to fill in the missing part.

def main():
x1, x2, x3 = input("Please enter three values: ")

missing code sets max to the value of the largest

print "The largest value is", max

Before reading the following analysis, you might want to try your hand at solving this problem.

7.5.1 Strategy 1: Compare Each to All

Obviously, this program presents us with a decision problem. We need a sequence of statements that sets the
value of max to the largest of the three inputs x1, x2, and x3. At first glance, this looks like a three-way
decision; we need to execute one of the following assignments.

max = x1
max = x2
max = x3

It would seem we just need to preface each one with the appropriate condition(s), so that it is executed only
in the proper situation.

Let’s consider the first possibility, that x1 is the largest. To see that x1 is actually the largest, we just
need to check that it is at least as large as the other two. Here is a first attempt:

if x1 >= x2 >= x3:
max = x1

Your first concern here should be whether this statement is syntactically correct. The condition x1 � �
x2 � � x3 does not match the template for conditions shown above. Most computer languages would not
accept this as a valid expression. It turns out that Python does allow this compound condition, and it behaves
exactly like the mathematical relations x1 � x2 � x3. That is, the condition is true when x1 is at least as large
as x2 and x2 is at least as large as x3. So, Python has no problem with this condition.

Whenever you write a decision, you should ask yourself two crucial questions. First, when the condition
is true, are you absolutely certain that executing the body of the decision is the right action to take? In this
case, the condition clearly states that x1 is at least as large as x2 and x3, so assigning its value to max should
be correct. Always pay particular attention to borderline values. Notice that our condition includes equal as
well as greater. We should convince ourselves that this is correct. Suppose that x1, x2, and x3 are all the
same; this condition will return true. That’s OK because it doesn’t matter which we choose, the first is at least
as big as the others, and hence, the max.

7.5. STUDY IN DESIGN: MAX OF THREE 113

The second question to ask is the converse of the first. Are we certain that this condition is true in all
cases where x1 is the max? Unfortunately, our condition does not meet this test. Suppose the values are 5,
2, and 4. Clearly, x1 is the largest, but our condition returns false since the relationship 5 � 2 � 4 does not
hold. We need to fix this.

We want to ensure that x1 is the largest, but we don’t care about the relative ordering of x2 and x3.
What we really need is two separate tests to determine that x1 >= x2 and that x2 >= x3. Python allows
us to test multiple conditions like this by combining them with the keyword and. We’ll discuss the exact
semantics of and in Chapter 8. Intuitively, the following condition seems to be what we are looking for:

if x1 >= x2 and x1 >= x3: # x1 is greater than each of the others
max = x1

To complete the program, we just need to implement analogous tests for the other possibilities.

if x1 >= x2 and x1 >= x3:
max = x1

elif x2 >= x1 and x2 >= x3:
max = x2

else:
max = x3

Summing up this approach, our algorithm is basically checking each possible value against all the others to
determine if it is the largest.

With just three values the result is quite simple. But how would this solution look if we were trying to find
the max of five values? Then we would need four Boolean expressions, each consisting of four conditions
anded together. The complex expressions result from the fact that each decision is designed to stand on its
own; information from one test is ignored in the following. To see what I mean, look back at our simple max
of three code. Suppose the first decision discovers that x1 is greater than x2, but not greater than x3. At
this point, we know that x3 must be the max. Unfortunately, our code ignores this; Python will go ahead and
evaluate the next expression, discover it to be false and finally execute the else.

7.5.2 Strategy 2: Decision Tree

One way to avoid the redundant tests of the previous algorithm is to use a decision tree approach. Suppose
we start with a simple test x1 � � x2. This knocks either x1 or x2 out of contention to be the max. If
the condition is true, we just need to see which is larger, x1 or x3. Should the initial condition be false,
the result boils down to a choice between x2 and x3. As you can see, the first decision “branches” into two
possibilities, each of which is another decision. Hence the name, decision tree. Figure 7.5 shows the situation
in a flowchart. This flowchart translates easily into nested if-else statements.

if x1 >= x2:
if x1 >= x3:

max = x1
else:

max = x3
else:

if x2 >= x3:
max = x2

else:
max = x3

The strength of this approach is its efficiency. No matter what the ordering of the three values, this
algorithm will make exactly two comparisons and assign the correct value to max. However, the structure of
this approach is more complicated than the first, and it suffers a similar complexity explosion, should we try
this design with more than three values. As a challenge, you might see if you can design a decision tree to
find the max of four values. (You will need if-elses nested three levels deep leading to eight assignment
statements.)

114 CHAPTER 7. CONTROL STRUCTURES, PART 1

noyes

yes no yes no

max = x3 max = x2max = x1 max = x3

x1 >= x3 x2 > =x3

x1 >= x2

Figure 7.5: Flowchart of the decision tree approach to max of three

7.5.3 Strategy 3: Sequential Processing

So far, we have designed two very different algorithms, but neither one seems particularly elegant. Perhaps
there is yet a third way. When designing an algorithm, a good starting place is to ask yourself how you would
solve the problem if you were asked to do the job. For finding the max of three numbers, you probably don’t
have a very good intuition about the steps you go through. You’d just look at the numbers and know which is
the largest. But what if you were handed a book containing hundreds of numbers in no particular order. How
would you find the largest in this collection?

When confronted with the larger problem, most people develop a simple strategy. Scan through the
numbers until you find a big one, and put your finger on it. Continue scanning; if you find a number bigger
than the one your finger is on, move your finger to the new one. When you get to the end of the list, your
finger will remain on the largest value. In a nutshell, this strategy has us look through the list sequentially,
keeping track of the largest number seen so far.

A computer doesn’t have fingers, but we can use a variable to keep track of the max so far. In fact, the
easiest approach is just to use max to do this job. That way, when we get to the end, max automatically
contains the value of the largest. A flowchart depicting this strategy for the max of three problem is shown in
Figure 7.6. Here is the translation into Python code:

max = x1
if x2 > max:

max = x2
if x3 > max:

max = x3

Clearly, the sequential approach is the best of our three algorithms. The code itself is quite simple,
containing only two simple decisions, and the sequencing is easier to understand than the nesting used in the
previous algorithm. Furthermore, the idea scales well to larger problems; adding a fourth item adds only one
more statement.

max = x1
if x2 > max:

max = x2
if x3 > max:

max = x3
if x4 > max:

max = x4

7.5. STUDY IN DESIGN: MAX OF THREE 115

max = x1

x2 > max

max = x2

max = x3

x3 > max

Figure 7.6: Flowchart of a sequential approach to the max of three problem.

It should not be surprising that the last solution scales to larger problems; we invented the algorithm
by explicitly considering how to solve a more complex problem. In fact, you can see that the code is very
repetitive. We can easily write a program that allows the user to find the largest of n numbers by folding our
algorithm into a loop. Rather than having separate variables for x1, x2, x3, etc., we can just get the values
one at a time and keep reusing a single variable x. Each time, we compare the newest x against the current
value of max to see if it is larger.

program: maxn.py
Finds the maximum of a series of numbers

def main():
n = input("How many numbers are there? ")

Set max to be the first value
max = input("Enter a number >> ")

Now compare the n-1 successive values
for i in range(n-1):

x = input("Enter a number >> ")
if x > max:

max = x

print "The largest value is", max

main()

This code uses a decision nested inside of a loop to get the job done. On each iteration of the loop, max
contains the largest value seen so far.

116 CHAPTER 7. CONTROL STRUCTURES, PART 1

7.5.4 Strategy 4: Use Python

Before leaving this problem, I really should mention that none of the algorithm development we have so
painstakingly pursued was necessary. Python actually has a built-in function called max that returns the
largest of its parameters. Here is the simplest version of our program.

def main():
x1, x2, x3 = input("Please enter three values: ")
print "The largest value is", max(x1, x2, x3)

Of course, this version didn’t require any algorithm development at all, which rather defeats the point of the
exercise! Sometimes Python is just too simple for our own good....

7.5.5 Some Lessons

The max of three problem is not particularly earth shattering, but the attempt to solve this problem has
illustrated some important ideas in algorithm and program design.

� There is more than one way to do it. For any non-trivial computing problem, there are many ways to
approach the problem. While this may seem obvious, many beginning programmers do not really take
this point to heart. What does this mean for you? Don’t rush to code up the first idea that pops into your
head. Think about your design, ask yourself if there is a better way to approach the problem. Once
you have written the code, ask yourself again if there might be a better way. Your first task is to find
a correct algorithm. After that, strive for clarity, simplicity, efficiency, scalability and elegance. Good
algorithms and programs are like poems of logic. They are a pleasure to read and maintain.

� Be the computer. Especially for beginning programmers, one of the best ways to formulate an algorithm
is to simply ask yourself how you would solve the problem. There are other techniques for designing
good algorithms (see Chapter 13); however, the straightforward approach is often simple, clear and
efficient enough.

� Generality is good. We arrived at the best solution to the max of three problem by considering the more
general max of n problem. It is not unusual that consideration of a more general problem can lead to
a better solution for some special case. Don’t be afraid to step back and think about the overarching
problem. Similarly, when designing programs, you should always have an eye toward making your
program more generally useful. If the max of n program is just as easy to write as max of three, you
may as well write the more general program because it is more likely to be useful in other situations.
That way you get the maximum utility from your programming effort.

� Don’t reinvent the wheel. Our fourth solution was to use Python’s max function. You may think that
was cheating, but this example illustrates an important point. A lot of very smart programmers have
designed countless good algorithms and programs. If the problem you are trying to solve seems to be
one that lots of others must have encountered, you might begin by finding out if the problem has already
been solved for you. As you are learning to program, designing from scratch is great experience. Truly
expert programmers, however, know when to borrow.

7.6 Exercises

1. Explain the following patterns in your own words.

(a) simple decision

(b) two-way decision

(c) multi-way decision

2. The following is a (silly) decision structure.

7.6. EXERCISES 117

a, b, c = input(’Enter three numbers: ’)
if a > b:

if b > c:
print "Spam Please!"

else:
print "It’s a late parrot!"

elif b > c:
print "Cheese Shoppe"
if a >= c:

print "Cheddar"
elif a < b:

print "Gouda"
elif c == b:

print "Swiss"
else:

print "Trees"
if a == b:

print "Chestnut"
else:

print "Larch"
print "Done"

Show the output that would result from each of the following possible inputs.

(a) 3, 4, 5

(b) 3, 3, 3

(c) 5, 4, 3

(d) 3, 5, 2

(e) 5, 4, 7

(f) 3, 3, 2

3. Many companies pay time-and-a-half for any hours worked above 40 in a given week. Write a program
to input the number of hours worked and the hourly rate and calculate the total wages for the week.

4. A certain CS professor gives 5-point quizzes that are graded on the scale 5-A, 4-B, 3-C, 2-D, 1-F, 0-F.
Write a program that accepts a quiz score as an input and uses a decision structure to calculate the
corresponding grade.

5. A certain CS professor gives 100-point exams that are graded on the scale 90–100:A, 80–89:B, 70–
79:C, 60–69:D, � 60:F. Write a program that accepts an exam score as input and uses a decision struc-
ture to calculate the corresponding grade.

6. A certain college classifies students according to credits earned. A student with less than 7 credits is a
Freshman. At least 7 credits are required to be a Sophomore, 16 to be a Junior and 26 to be classified
as a Senior. Write a program that calculates class standing from the number of credits earned.

7. The body mass index (BMI) is calculated as a person’s weight (in pounds) times 720, divided by the
square of the person’s height (in inches). A BMI in the range 19–25, inclusive, is considered healthy.
Write a program that calculates a person’s BMI and prints a message telling whether they are above,
within or below the healthy range.

8. The speeding ticket fine policy in Podunksville is $50 plus $5 for each mph over the limit plus a penalty
of $200 for any speed over 90 mph. Write a program that accepts a speed limit and a clocked speed
and either prints a message indicating the speed was legal or prints the amount of the fine, if the speed
is illegal.

118 CHAPTER 7. CONTROL STRUCTURES, PART 1

9. A babysitter charges $2.50 an hour until 9:00 PM when the rate drops to $1.75 an hour (the children
are in bed). Write a program that accepts a starting time and ending time in hours and minutes and
calculates the total babysitting bill. You may assume that the starting and ending times are in a single
24 hour period. Partial hours should be appropriately prorated.

10. A person is eligible to be a US senator if they are at least 30 years old and have been a US citizen for
at least 9 years. To be a US representative these numbers are 25 and 7, respectively. Write a program
that accepts a person’s age and years of citizenship as input and outputs their eligibility for the Senate
and House.

11. A formula for computing Easter in the years 1982–2048, inclusive, is as follows: let a � year%19,
b � year%4, c � year%7, d �

�
19a � 24 � %30, e �

�
2b � 4c � 6d � 5 � %7. The date of Easter is March

22 � d � e (which could be in April). Write a program that inputs a year, verifies that it is in the proper
range and then prints out the date of Easter that year.

12. The formula for Easter in the previous problem works for every year in the range 1900–2099 except
for 1954, 1981, 2049 and 2076. For these 4 years it produces a date that is one week too late. Modify
the above program to work for the entire range 1900–2099.

13. A year is a leap year if it is divisible by 4, unless it is a century year that is not divisible by 400. (1800
and 1900 are not leap years while 1600 and 2000 are.) Write a program that calculates whether a year
is a leap year.

14. Write a program that accepts a date in the form month/day/year and outputs whether or not the date is
valid. For example 5/24/1962 is valid, but 9/31/2000 is not. (September has only 30 days.)

15. The days of the year are often numbered from 1 to through 365 (or 366). This number can be computed
in three steps using int arithmetic:

(a) dayNum � 31
�
month � 1 � � day

(b) if the month is after February subtract
�
4month � 23 � �

10

(c) if it’s a leap year and after February 29, add 1

Write a program that accepts a date as month/day/year, verifies that it is a valid date (see previous
problem) and then calculates the corresponding day number.

16. Take a favorite programming problem from a previous chapter and add decisions and/or exception
handling as required to make it truly robust (will not crash on any inputs).

17. Archery Scorer. Write a program that draws an archery target (see exercises from Chapter 5) and
allows the user to click 5 times to represent arrows shot at the target. Using 5-band scoring, a bulls-eye
(yellow) is worth 9 points and each successive ring is worth 2 fewer points down to 1 for white. The
program should output a score for each click and keep track of a running sum for the entire series.

Chapter 8

Control Structures, Part 2

In Chapter 7, we looked in detail at the Python if statement and its use in implementing design patterns such
as one-way, two-way and multi-way decisions. In this chapter, we’ll wrap up our tour of control structures
with a detailed look at loops and Boolean expressions.

8.1 For Loops: A Quick Review

You already know that the Python for statement provides a kind of loop. It allows us to iterate through a
sequence of values.

for <var> in <sequence>:
<body>

The loop index variable var takes on each successive value in the sequence, and the statements in the body
of the loop are executed once for each value.

Suppose we want to write a program that can compute the average of a series of numbers entered by the
user. To make the program general, it should work for any size set of numbers. You know that an average
is calculated by summing up the numbers and dividing by the count of how many numbers there are. We
don’t need to keep track of all the numbers that have been entered; we just need a running sum so that we can
calculate the average at the end.

This problem description should start some bells ringing in your head. It suggests the use of some design
patterns you have seen before. We are dealing with a series of numbers—that will be handled by some form
of loop. If there are n numbers, the loop should execute n times; we can use the counted loop pattern. We
also need a running sum; that calls for a loop accumulator. Putting the two ideas together, we can generate a
design for this problem.

Input the count of the numbers, n
Initialize sum to 0
Loop n times

Input a number, x
Add x to sum

Output average as sum / n

Hopefully, you see both the counted loop and accumulator patterns integrated into this design.
We can translate this design almost directly into a Python implementation.

average1.py

def main():
n = input("How many numbers do you have? ")
sum = 0.0
for i in range(n):

119

120 CHAPTER 8. CONTROL STRUCTURES, PART 2

x = input("Enter a number >> ")
sum = sum + x

print "\nThe average of the numbers is", sum / n

The running sum starts at 0, and each number is added in turn. Notice that sum is initialized to a float 0.0.
This ensures that the division sum / n on the last line returns a float even if all the input values were ints.

Here is the program in action.

How many numbers do you have? 5
Enter a number >> 32
Enter a number >> 45
Enter a number >> 34
Enter a number >> 76
Enter a number >> 45

The average of the numbers is 46.4

Well, that wasn’t too bad. Knowing a couple of common patterns, counted loop and accumulator, got
us to a working program with minimal difficulty in design and implementation. Hopefully, you can see the
worth of committing these sorts of programming clichés to memory.

8.2 Indefinite Loops

Our averaging program is certainly functional, but it doesn’t have the best user interface. It begins by asking
the user how many numbers there are. For a handful of numbers this is OK, but what if I have a whole page
of numbers to average? It might be a significant burden to go through and count them up.

It would be much nicer if the computer could take care of counting the numbers for us. Unfortunately, as
you no doubt recall, the for loop is a definite loop, and that means the number of iterations is determined
when the loop starts. We can’t use a definite loop unless we know the number of iterations ahead of time, and
we can’t know how many iterations this loop needs until all of the numbers have been entered. We seem to
be stuck.

The solution to this dilemma lies in another kind of loop, the indefinite or conditional loop. An indefinite
loop keeps iterating until certain conditions are met. There is no guarantee ahead of time regarding how many
times the loop will go around.

In Python, an indefinite loop is implemented using a while statement. Syntactically, the while is very
simple.

while <condition>:
<body>

Here condition is a Boolean expression, just like in if statements. The body is, as usual, a sequence of
one or more statements.

The semantics of while is straightforward. The body of the loop executes repeatedly as long as the
condition remains true. When the condition is false, the loop terminates. Figure 8.1 shows a flowchart for the
while. Notice that the condition is always tested at the top of the loop, before the loop body is executed.
This kind of structure is called a pre-test loop. If the loop condition is initially false, the loop body will not
execute at all.

Here is an example of a simple while loop that counts from 0 to 10:

i = 0
while i <= 10:

print i
i = i + 1

This code will have the same output as if we had written a for loop like this:

8.3. COMMON LOOP PATTERNS 121

<body>

yes

no<condition>?

Figure 8.1: Flowchart of a while loop.

for i in range(11):
print i

Notice that the while version requires us to take care of initializing i before the loop and incrementing i at
the bottom of the loop body. In the for loop, the loop variable is handled automatically.

The simplicity of the while statement makes it both powerful and dangerous. Because it is less rigid, it
is more versatile; it can do more than just iterate through sequences. But it is also a common source of errors.

Suppose we forget to increment i at the bottom of the loop body in the counting example.

i = 0
while i <= 10:

print i

What will the output from this program be? When Python gets to the loop, i will be 0, which is less than
10, so the loop body executes, printing a 0. Now control returns to the condition; i is still 0, so the loop
body executes again, printing a 0. Now control returns to the condition; i is still 0, so the loop body executes
again, printing a 0....

You get the picture. This is an example of an infinite loop. Usually, infinite loops are a bad thing. Clearly
this version of the program does nothing useful. That reminds me, did you hear about the computer scientist
who died of exhaustion while washing his hair? The instructions on the bottle said: “Lather. Rinse. Repeat.”

As a beginning programmer, it would surprising if you did not accidently write a few programs with
infinite loops—it’s a rite of passage for programmers. Even more experienced programmers have been known
to do this from time to time. Usually, you can break out of a loop by pressing � Ctrl � -c (holding down the

� Ctrl � key and pressing “c”). If your loop is really tight, this might not work, and you’ll have to resort to
more drastic means (such as � Ctrl � - � Alt � - � Delete � on a PC). If all else fails, there is always the trusty
reset button on your computer. The best idea is to avoid writing infinite loops in the first place.

8.3 Common Loop Patterns

8.3.1 Interactive Loops

One good use of the indefinite loop is to write interactive loops. The idea behind an interactive loop is that
it allows the user to repeat certain portions of a program on demand. Let’s take a look at this loop pattern in
the context of our number averaging problem.

122 CHAPTER 8. CONTROL STRUCTURES, PART 2

Recall that the previous version of the program forced the user to count up how many numbers there were
to be averaged. We want to modify the program so that it keeps track of how many numbers there are. We
can do this with another accumulator, call it count, that starts at zero and increases by 1 each time through
the loop.

To allow the user to stop at any time, each iteration of the loop will ask whether there is more data to
process. The general pattern for an interactive loop looks like this:

set moredata to "yes"
while moredata is "yes"

get the next data item
process the item
ask user if there is moredata

Combining the interactive loop pattern with accumulators for the sum and count yields this algorithm for
the averaging program.

initialize sum to 0.0
initialize count to 0
set moredata to "yes"
while moredata is "yes"

input a number, x
add x to sum
add 1 to count
ask user if there is moredata

output sum / count

Notice how the two accumulators are interleaved into the basic structure of the interactive loop.
Here is the corresponding Python program:

average2.py

def main():
sum = 0.0
count = 0
moredata = "yes"
while moredata[0] == "y":

x = input("Enter a number >> ")
sum = sum + x
count = count + 1
moredata = raw_input("Do you have more numbers (yes or no)? ")

print "\nThe average of the numbers is", sum / count

Notice this program uses string indexing (moredata[0]) to look just at the first letter of the user’s input.
This allows for varied responses such as “yes,” “y,” “yeah,” etc. All that matters is that the first letter is a “y.”
Also note the use of raw input to get this value. Remember you should use raw input to get string data.

Here is sample output from this program.

Enter a number >> 32
Do you have more numbers (yes or no)? yes
Enter a number >> 45
Do you have more numbers (yes or no)? y
Enter a number >> 34
Do you have more numbers (yes or no)? y
Enter a number >> 76
Do you have more numbers (yes or no)? y
Enter a number >> 45
Do you have more numbers (yes or no)? nope

8.3. COMMON LOOP PATTERNS 123

The average of the numbers is 46.5

In this version, the user doesn’t have to count the data values, but the interface is still not good. The user
will almost certainly be annoyed by the constant prodding for more data. The interactive loop has many good
applications; this is not one of them.

8.3.2 Sentinel Loops

A better solution to the number averaging problem is to employ a pattern commonly known as a sentinel
loop. A sentinel loop continues to process data until reaching a special value that signals the end. The special
value is called the sentinel. Any value may be chosen for the sentinel. The only restriction is that it be
distinguishable from actual data values. The sentinel is not processed as part of the data.

Here is a general pattern for designing sentinel loops:

get the first data item
while item is not the sentinel

process the item
get the next data item

Notice how this pattern avoids processing the sentinel item. The first item is retrieved before the loop starts.
This is sometimes called the priming read, as it gets the process started. If the first item is the sentinel, the
loop immediately terminates and no data is processed. Otherwise, the item is processed and the next one is
read. The loop test at the top ensures this next item is not the sentinel before processing it. When the sentinel
is reached, the loop terminates.

We can apply the sentinel pattern to our number averaging problem. The first step is to pick a sentinel.
Suppose we are using the program to average exam scores. In that case, we can safely assume that no score
will be below 0. The user can enter a negative number to signal the end of the data. Combining the sentinel
loop with the two accumulators from the interactive loop version yields this program.

average3.py

def main():
sum = 0.0
count = 0
x = input("Enter a number (negative to quit) >> ")
while x >= 0:

sum = sum + x
count = count + 1
x = input("Enter a number (negative to quit) >> ")

print "\nThe average of the numbers is", sum / count

I have changed the prompt so that the user knows how to signal the end of the data. Notice that the prompt is
identical at the priming read and the bottom of the loop body.

Now we have a useful form of the program. Here it is in action:

Enter a number (negative to quit) >> 32
Enter a number (negative to quit) >> 45
Enter a number (negative to quit) >> 34
Enter a number (negative to quit) >> 76
Enter a number (negative to quit) >> 45
Enter a number (negative to quit) >> -1

The average of the numbers is 46.4

This version provides the ease of use of the interactive loop without the hassle of having to type “yes” all the
time. The sentinel loop is a very handy pattern for solving all sorts of data processing problems. It’s another
cliché that you should commit to memory.

124 CHAPTER 8. CONTROL STRUCTURES, PART 2

This sentinel loop solution is quite good, but there is still a limitation. The program can’t be used to
average a set of numbers containing negative as well as positive values. Let’s see if we can’t generalize the
program a bit. What we need is a sentinel value that is distinct from any possible valid number, positive or
negative. Of course, this is impossible as long as we restrict ourselves to working with numbers. No matter
what number or range of numbers we pick as a sentinel, it is always possible that some data set may contain
such a number.

In order to have a truly unique sentinel, we need to broaden the possible inputs. Suppose that we get the
input from the user as a string. We can have a distinctive, non-numeric string that indicates the end of the
input; all others would be converted into numbers and treated as data. One simple solution is to have the
sentinel value be an empty string. Remember, an empty string is represented in Python as "" (quotes with
no space between). If the user types a blank line in response to a raw input (just hits � Enter �), Python
returns an empty string. We can use this as a simple way to terminate input. The design looks like this:

Initialize sum to 0.0
Initialize count to 0
Input data item as a string, xStr
while xStr is not empty

Convert xStr to a number, x
Add x to sum
Add 1 to count
Input next data item as a string, xStr

Output sum / count

Comparing this to the previous algorithm, you can see that converting the string to a number has been added
to the processing section of the sentinel loop.

Translating into Python yields this program:

average4.py

def main():
sum = 0.0
count = 0
xStr = raw_input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = eval(xStr)
sum = sum + x
count = count + 1
xStr = raw_input("Enter a number (<Enter> to quit) >> ")

print "\nThe average of the numbers is", sum / count

This code makes use of eval (from Chapter 4) to convert the input string into a number.
Here is an example run, showing that it is now possible to average arbitrary sets of numbers:

Enter a number (<Enter> to quit) >> 34
Enter a number (<Enter> to quit) >> 23
Enter a number (<Enter> to quit) >> 0
Enter a number (<Enter> to quit) >> -25
Enter a number (<Enter> to quit) >> -34.4
Enter a number (<Enter> to quit) >> 22.7
Enter a number (<Enter> to quit) >>

The average of the numbers is 3.38333333333

We finally have an excellent solution to our original problem. You should study this solution so that you can
incorporate these techniques into your own programs.

8.3. COMMON LOOP PATTERNS 125

8.3.3 File Loops

One disadvantage of all the averaging programs presented so far is that they are interactive. Imagine you are
trying to average 87 numbers and you happen to make a typo near the end. With our interactive program, you
will need to start all over again.

A better approach to the problem might be to type all of the numbers into a file. The data in the file can
be perused and edited before sending it to a program that generates a report. This file-oriented approach is
typically used for data processing applications.

Back in Chapter 4, we looked at reading data from files using the Python readlinesmethod and a for
loop. We can apply this technique directly to the number averaging problem. Assuming that the numbers are
typed into a file one per line, we can compute the average with this program.

average5.py

def main():
fileName = raw_input("What file are the numbers in? ")
infile = open(fileName,’r’)
sum = 0.0
count = 0
for line in infile.readlines():

sum = sum + eval(line)
count = count + 1

print "\nThe average of the numbers is", sum / count

In this code, readlines reads the entire file into memory as a sequence of strings. The loop variable line
then iterates through this sequence; each line is converted to a number and added to the running sum.

One potential problem with this kind of file processing loop is that the entire contents of the file are first
read into main memory via the readlines method. As you know from Chapter 1, secondary memory
where files reside is usually much larger than the primary memory. It’s possible that a large data file may
not fit into memory all at one time. In that case, this approach to file processing will be very inefficient and,
perhaps, not work at all.

With very large data files, it is better to read and process small sections of the file at a time. In the case of
text files, a simple approach is to process the file one line at a time. This is easily accomplished by a sentintel
loop and the Python readline method on files. Recall, the readline method gets the next line from a
file as a string. When we come to the end of the file, readline returns an empty string, which we can use
as a sentinel value. Here is a general pattern for an end-of-file loop in Python.

line = infile.readline()
while line != "":

process line
line = infile.readline()

At first glance, you may be concerned that this loop stops prematurely if it encounters an empty line in
the file. This is not the case. Remember, a blank line in a text file contains a single newline character ("

�
n"),

and the readline method includes the newline character in its return value. Since "
�
n" != "", the loop

will continue.
Here is the code that results from applying the end-of-file sentinel loop to our number averaging problem.

average6.py

def main():
fileName = raw_input("What file are the numbers in? ")
infile = open(fileName,’r’)
sum = 0.0
count = 0

126 CHAPTER 8. CONTROL STRUCTURES, PART 2

line = infile.readline()
while line != "":

sum = sum + eval(line)
count = count + 1
line = infile.readline()

print "\nThe average of the numbers is", sum / count

Obviously, this version is not quite as concise as the version using readlines and a for loop. If the
file sizes are known to be relatively modest, that approach is probably better. When file sizes are quite large,
however, an end-of-file loop is invaluable.

8.3.4 Nested Loops

In the last chapter, you saw how control structures such as decisions and loops could be nested inside one
another to produce sophisticated algorithms. One particularly useful, but somewhat tricky technique is the
nesting of loops.

Let’s take a look at an example program. How about one last version of our number averaging problem?
Honest, I promise this is the last time I’ll use this example.1 Suppose we modify the specification of our file
averaging problem slightly. This time, instead of typing the numbers into the file one-per-line, we’ll allow
any number of values on a line. When multiple values appear on a line, they will be separated by commas.

At the top level, the basic algorithm will be some sort of file-processing loop that computes a running
sum and count. For practice, let’s use an end-of-file loop. Here is the code comprising the top-level loop.

sum = 0.0
count = 0
line = infile.readline()
while line != "":

update sum and count for values in line
line = infile.readline()

print "\nThe average of the numbers is", sum / count

Now we need to figure out how to update the sum and count in the body of the loop. Since each
individual line of the file contains one or more numbers separated by commas, we can split the line into
substrings, each of which represents a number. Then we need to loop through these substrings, convert each
to a number, and add it to sum. We also need to add 1 to count for each number. Here is a code fragment
that processes a line:

for xStr in string.split(line,","):
sum = sum + eval(xStr)
count = count +1

Notice that the iteration of the for loop in this fragment is controlled by the value of line, which just
happens to be the loop-control variable for the file-processing loop we outlined above.

Knitting these two loops together, here is our program.

average7.py
import string

def main():
fileName = raw_input("What file are the numbers in? ")
infile = open(fileName,’r’)
sum = 0.0
count = 0
line = infile.readline()
while line != "":

1until Chapter 11...

8.4. COMPUTING WITH BOOLEANS 127

update sum and count for values in line
for xStr in string.split(line):

sum = sum + eval(xStr)
count = count + 1

line = infile.readline()
print "\nThe average of the numbers is", sum / count

As you can see, the loop that processes the numbers in a line is indented inside of the file processing loop.
The outer while loop iterates once for each line of the file. On each iteration of the outer loop, the inner
for loop iterates as many times as there are numbers on that line. When the inner loop finishes, the next line
of the file is read, and the outer loop goes through its next iteration.

The individual fragments of this problem are not complex when taken separately, but the final result is
fairly intricate. The best way to design nested loops is to follow the process we did here. First design the
outer loop without worrying about what goes inside. Then design what goes inside, ignoring the outer loop(s).
Finally, put the pieces together, taking care to preserve the nesting. If the individual loops are correct, the
nested result will work just fine; trust it. With a little practice, you’ll be implementing double-, even triple-
nested loops with ease.

8.4 Computing with Booleans

We now have two control structures, if and while, that use conditions, which are Boolean expressions.
Conceptually, a Boolean expression evaluates to one of two values: false or true. In Python, these values are
represented by the ints 0 and 1. So far, we have used simple Boolean expressions that compare two values
(e.g., while x >= 0).

8.4.1 Boolean Operators

Sometimes the simple conditions that we have been using do not seem expressive enough. For example,
suppose you need to determine whether two point objects are in the same position—that is, they have equal x
coordinates and equal y coordinates. One way of handling this would be a nested decision.

if p1.getX() == p2.getX():
if p1.getY() == p2.getY():

points are the same
else:

points are different
else:

points are different

You can see how awkward this is.
Instead of working around this problem with a decision structure, another approach would be to construct

a more complex expression using Boolean operations. Like most programming languages, Python provides
three Boolean operators: and, or and not. Let’s take a look at these three operators and then see how they
can be used to simplify our problem.

The Boolean operators and and or are used to combine two Boolean expressions and produce a Boolean
result.

<expr> and <expr>
<expr> or <expr>

The and of two expressions is true exactly when both of the expressions are true. We can represent this
definition in a truth table.

128 CHAPTER 8. CONTROL STRUCTURES, PART 2

P Q P and Q
T T T
T F F
F T F
F F F

In this table, P and Q represent smaller Boolean expressions. Since each expression has two possible values,
there are four possible combinations of values, each shown as one row in the table. The last column gives the
value of P and Q for each possible combination. By definition, the and is true only in the case where both
P and Q are true.

The or of two expressions is true when either expression is true. Here is the truth table defining or:

P Q P or Q
T T T
T F T
F T T
F F F

The only time the or is false is when both expressions are false. Notice especially that or is true when both
expressions are true. This is the mathematical definition of or, but the word “or” is sometimes used in an
exclusive sense in everyday English. If your mom said that you could have cake or cookies for dessert, she
would probably scold you for taking both.

The not operator computes the opposite of a Boolean expression. It is a unary operator, meaning that it
operates on a single expression. The truth table is very simple.

P not P
T F
F T

Using Boolean operators, it is possible to build arbitrarily complex Boolean expressions. As with arith-
metic operators, the exact meaning of a complex expression depends on the precedence rules for the operators.
Consider this expression.

a or not b and c

How should this be evaluated?
Python follows a standard convention that the order of precedence is not, followed by and, followed by

or. So the expression would be equivalent to this parenthesized version.

(a or ((not b) and c))

Unlike arithmetic, however, most people don’t tend to know or remember the precedence rules for Booleans.
I suggest that you always parenthesize your complex expressions to prevent confusion.

Now that we have some Boolean operators, we are ready to return to our example problem. To test for
the co-location of two points, we could use an and operation.

if p1.getX() == p2.getX() and p2.getY() == p1.getY():
points are the same

else:
points are different

Here the entire expression will only be true when both of the simple conditions are true. This ensures that
both the x and y coordinates have to match for the points to be the same. Obviously, this is much simpler and
clearer than the nested ifs from the previous version.

Let’s look at a slightly more complex example. In the next chapter, we will develop a simulation for the
game of racquetball. Part of the simulation will need to determine when a game has ended. Suppose that
scoreA and scoreB represent the scores of two racquetball players. The game is over as soon as either of
the players has reached 15 points. Here is a Boolean expression that is true when the game is over:

8.4. COMPUTING WITH BOOLEANS 129

scoreA == 15 or scoreB == 15

When either score reaches 15, one of the two simple conditions becomes true, and, by definition of or, the
entire Boolean expression is true. As long as both conditions remain false (neither player has reached 15) the
entire expression is false.

Our simulation will need a loop that continues as long as the game is not over. We can construct an
appropriate loop condition by taking the negation of the game-over condition:

while not (scoreA == 15 or scoreB == 15):
continue playing

We can also construct more complex Boolean expressions that reflect different possible stopping condi-
tions. Some racquetball players play shutouts (sometimes called a skunk). For these players, a game also
ends when one of the players reaches 7 and the other has not yet scored a point. For brevity, I’ll use a for
scoreA and b for scoreB. Here is an expression for game-over when shutouts are included:

a == 15 or b == 15 or (a == 7 and b == 0) or (b == 7 and a == 0)

Do you see how I have added two more situations to the original condition? The new parts reflect the two
possible ways a shutout can occur, and each requires checking both scores. The result is a fairly complex
expression.

While we’re at it, let’s try one more example. Suppose we were writing a simulation for volleyball, rather
than racquetball. Volleyball does not have shutouts, but it requires a team to win by at least two points. If the
score is 15 to 14, or even 21 to 20, the game continues.

Let’s write a condition that computes when a volleyball game is over. Here’s one approach.

(a >= 15 and a - b >= 2) or (b >= 15 and b - a >= 2)

Do you see how this expression works? It basically says the game is over when team A has won (scored at
least 15 and leading by at least 2) or when team B has won.

Here is another way to do it.

(a >= 15 or b >= 15) and abs(a - b) >= 2

This version is a bit more succinct. It states that the game is over when one of the teams has reached a
winning total and the difference in the scores is at least 2. Remember that abs returns the absolute value of
an expression.

8.4.2 Boolean Algebra

All decisions in computer programs boil down to appropriate Boolean expressions. The ability to formulate,
manipulate and reason with these expressions is an important skill for programmers and computer scientists.
Boolean expressions obey certain algebraic laws similar to those that apply to numeric operations. These
laws are called Boolean logic or Boolean algebra.

Let’s look at a few examples. The following table shows some rules of algebra with their correlates in
Boolean algebra.

Algebra Boolean algebra
a � 0 � 0 a and false == false
a � 1 � a a and true == a
a � 0 � a a or false == a

From these examples, you can see that and has similarities to multiplication, and or has similarities to
addition; while 0 and 1 correspond to false and true.

Here are some other interesting properties of Boolean operations. Anything ored with true is just true.

a or true == true

Both and and or distribute over each other.

130 CHAPTER 8. CONTROL STRUCTURES, PART 2

a or (b and c) == (a or b) and (a or c)
a and (b or c) == (a and b) or (a and c)

A double negative cancels out.

not(not a) == a

The next two identities are known as DeMorgan’s laws.

not(a or b) == (not a) and (not b)
not(a and b) == (not a) or (not b)

Notice how the operator changes between and and or when the not is pushed into an expression.
One application of Boolean algebra is the analysis and simplification of Boolean expressions inside of

programs. For example, let’s go back to the racquetball game one more time. Above, we developed a loop
condition for continuing the game that looked like this:

while not (scoreA == 15 or scoreB == 15):
continue playing

You can read this condition as something like: While it is not the case that player A has 15 or player B has 15,
continue playing. We’re pretty sure that’s correct, but negating complex conditions like this can be somewhat
awkward, to say the least. Using a little Boolean algebra, we can transform this result.

Applying DeMorgan’s law, we know that the expression is equivalent to this.

(not scoreA == 15) and (not scoreB == 15)

Remember, we have to change the or to and when “distributing” the not. This condition is no better than
the first, but we can go one step farther by pushing the nots into the conditions themselves.

while scoreA != 15 and scoreB != 15:
continue playing

Now we have a version that is much easier to understand. This reads simply as while player A has not reached
15 and player B has not reached 15, continue playing.

This particular example illustrates a generally useful approach to loop conditions. Sometimes it’s easier
to figure out when a loop should stop, rather than when the loop should continue. In that case, simply write
the loop termination condition and then put a not in front of it. An application or two of DeMorgan’s laws
can then get you to a simpler but equivalent version suitable for use in a while statement.

8.5 Other Common Structures

Taken together, the decision structure (if) along with a pre-test loop (while) provide a complete set of
control structures. This means that every algorithm can be expressed using just these. Once you’ve mastered
the while and the if, there is no algorithm that you cannot write, in principle. However, for certain
kinds of problems, alternative structures can sometimes be convenient. This section outlines some of those
alternatives.

8.5.1 Post-Test Loop

Suppose you are writing an input algorithm that is supposed to get a nonnegative number from the user. If the
user types an incorrect input, the program asks for another value. It continues to reprompt until the user enters
a valid value. This process is called input validation. Well-engineered programs validate inputs whenever
possible.

Here is a simple algorithm.

repeat
get a number from the user

until number is >= 0

8.5. OTHER COMMON STRUCTURES 131

The idea here is that the loop keeps getting inputs until the value is acceptable. The flowchart depicting this
design in shown in Figure 8.2. Notice how this algorithm contains a loop where the condition test comes after
the loop body. This is a post-test loop. A post-test loop must always execute the body of the loop at least
once.

yes

no

number < 0 ?

Get a number

Figure 8.2: Flowchart of a post-test loop.

Unlike some other languages, Python does not have a statement that directly implements a post-test loop.
However, this algorithm can be implemented with a while by “seeding” the loop condition for the first
iteration.

number = -1 # Start with an illegal value to get into the loop.
while number < 0:

number = input("Enter a positive number: ")

This forces the loop body to execute at least once and is equivalent to the post-test algorithm. You might
notice that this is similar to the structure given earlier for the interactive loop pattern. Interactive loops are
naturally suited to a post-test implementation.

Some programmers prefer to simulate a post-test loop more directly by using a Python break statement.
Executing break causes Python to immediately exit the enclosing loop. Often a break statement is used
to leave what looks syntactically like an infinite loop.

Here is the same algorithm implemented with a break.

while 1:
number = input("Enter a positive number: ")
if x >= 0: break # Exit loop if number is valid.

The first line may look a bit strange to you. Remember that conditions in Python evaluate to either a 0 for false
or a 1 for true. The heading while 1 appears to be an infinite loop, since the expression always evaluates
to 1 (i.e., it is always true). However, when the value of x is nonnegative, the break statement executes,
which terminates the loop. Notice the break is placed on the same line as the if. This is legal when the
body of the if only contains one statement. It’s common to see a one-line if-break combination used as
a loop exit.

Even this small example can be improved. It would be nice if the program issued a warning explaining
why the input was invalid. In the while version of the post-test loop, this is a bit awkward. We need to add
an if so that the warning is not displayed for valid inputs.

132 CHAPTER 8. CONTROL STRUCTURES, PART 2

number = -1 # Start with an illegal value to get into the loop.
while number < 0:

number = input("Enter a positive number: ")
if number < 0:

print "The number you entered was not positive"

See how the validity check gets repeated in two places?
Adding a warning to the version using break only requires adding an else to the existing if.

while 1:
number = input("Enter a positive number: ")
if x >= 0:

break # Exit loop if number is valid.
else:

print "The number you entered was not positive"

8.5.2 Loop and a Half

Some programmers would solve the warning problem from the previous section using a slightly different
style.

while 1:
number = input("Enter a positive number: ")
if x >= 0: break # Loop exit
print "The number you entered was not positive"

Here the loop exit is actually in the middle of the loop body. This is called a loop and a half. Some purists
frown on exits in the midst of a loop like this, but the pattern can be quite handy.

The loop and a half is an elegant way to avoid the priming read in a sentinel loop. Here is the general
pattern of a sentinel loop implemented as a loop and a half.

while 1:
Get next data item
if the item is the sentinel: break
process the item

Figure 8.3 shows a flowchart of this approach to sentinel loops. You can see that this implementation is
faithful to the first rule of sentinel loops: avoid processing the sentinel value.

The choice of whether to use break statements or not is largely a matter of taste. Either style is accept-
able. One temptation that should generally be avoided is peppering the body of a loop with multiple break
statements. The logic of a loop is easily lost when there are multiple exits. However, there are times when
even this rule should be broken to provide the most elegant solution to a problem.

8.5.3 Boolean Expressions as Decisions

So far, we have talked about Boolean expressions only within the context of other control structures. Some-
times, Boolean expressions themselves can act as control structures. In fact, Boolean expressions are so
flexible in Python that they can sometimes lead to subtle programming errors.

Consider writing an interactive loop that keeps going as long as the user response starts with a “y.” To
allow the user to type either an upper or lower case response, you could use a loop like this:

while response[0] == "y" or response[0] == "Y":

You must be be careful not to abbreviate this condition as you might think of it in English: “While the first
letter is ’y’ or ’Y”’. The following form does not work.

while response[0] == "y" or "Y":

8.5. OTHER COMMON STRUCTURES 133

no

yes

Process the item

Item is the sentinel ?

Get next Data item

Figure 8.3: Loop-and-a-half implementation of sentinel loop pattern

In fact, this is an infinite loop. Understanding why this condition is always true requires digging into some
idiosyncrasies of Python Boolean expressions.

You already know that Python does not have any special Boolean type. We have been using the int values
0 and 1 to represent the Boolean values false and true, respectively. The Python condition operators (i.e.,
==) always evaluate to either 0 or 1. However, Python is actually very flexible about what can be a Boolean
expression. Any built-in type can be interpreted as a Boolean. For numbers (ints, floats and long ints) a zero
value is considered as false, anything other than zero is taken as true. Other types can also be used in Boolean
expressions. For example, Python interprets an empty string as false and any nonempty string as true.

The flexibility of Python Booleans extends to the Boolean operators. Although the main use of these
operators is forming Boolean expressions, they have operational definitions that make them useful for other
purposes as well. This table summarizes the behavior of these operators.

operator operational definition
x and y If x is false, return x. Otherwise, return y.
x or y If x is false, return y. Otherwise, return x.
not x If x is false, return 1. Otherwise, return 0.

The definition of not is straightforward. It might take a bit of thinking to convince yourself that these
descriptions of and and or faithfully reflect the truth tables you saw at the beginning of the chapter.

Consider the expression x and y. In order for this to be true, both expressions x and y must be true. As
soon as one of them is discovered to be false, the party is over. Python looks at the expressions left-to-right.
If x is false, Python should return a false result. Whatever the false value of x was, that is what is returned.
If x turns out to be true, then the truth or falsity of the whole expression turns on the result of y. Simply
returning y guarantees that if y is true, the whole result is true, and if y is false, the whole result is false.
Similar reasoning can be used to show that the description of or is faithful to the logical definition of or
given in the truth table.

These operational definitions show that Python’s Boolean operators are short-circuit operators. That
means that a true or false value is returned as soon as the result is known. In an andwhere the first expression
is false and in an or where the first expression is true, Python will not even evaluate the second expression.

Now let’s take a look at our infinite loop problem.

134 CHAPTER 8. CONTROL STRUCTURES, PART 2

response[0] == "y" or "Y"

Treated as a Boolean expression, this will always evaluate to true. The first thing to notice is that the Boolean
operator is combining two expressions; the first is a simple condition, and the second is a string. Here is an
equivalent parenthesized version:

(response[0] == "y") or ("Y"):

By the operational description of or, this expression returns either 1 (returned by == when response[0]
is “y”) or "Y" (when response[0] is not a “y”). Either of these results is interpreted by Python as true.

A more logic-oriented way to think about this is to simply look at the second expression. It is a nonempty
string, so Python will always interpret it as true. Since at least one of the two expressions is always true, the
or of the expressions must always be true as well.

So, the strange behavior of this example is due to some quirks in the definitions of the Boolean operators.
This is one of the few places where the design of Python has a potential pitfall for the beginning programmer.
You may wonder about the wisdom of this design, yet the flexibility of Python allows for certain succinct
programming idioms that many programmers find useful. Let’s look at an example.

Frequently, programs prompt users for information but offer a default value for the response. The default
value, sometimes listed in square brackets, is used if the user simply hits the � Enter � key. Here is an example
code fragment:

ans = raw_input("What flavor do you want [vanilla]: ")
if ans != "":

flavor = ans
else:

flavor = "vanilla"

Exploiting the fact that the string in ans can be treated as a Boolean, the condition in this code can be
simplified as follows.

ans = raw_input("What flavor do you want [vanilla]: ")
if ans:

flavor = ans
else:

flavor = "vanilla"

Here a Boolean condition is being used to decide how to set a string variable. If the user just hits � Enter � ,
ans will be an empty string, which Python interprets as false. In this case, the empty string will be replaced
by "vanilla" in the else clause.

The same idea can be succinctly coded by treating the strings themselves as Booleans and using an or.

ans = raw_input("What flavor do you want [vanilla]: ")
flavor = ans or "vanilla"

The operational definition of or guarantees that this is equivalent to the if-else version. Remember, any
nonempty answer is interpreted as “true.”

In fact, this task can easily be accomplished in a single line of code.

flavor = raw_input("What flavor do you want [vanilla]: ") or "vanilla"

I don’t know whether it’s really worthwhile to save a few lines of code using Boolean operators this way. If
you like this style, by all means, feel free to use it. Just make sure that your code doesn’t get so tricky that
others (or you) have trouble understanding it.

8.6 Exercises

1. Compare and contrast the following pairs of terms.

8.6. EXERCISES 135

(a) Definite loop vs. Indefinite loop

(b) For loop vs. While loop

(c) Interactive loop vs. Sentinel loop

(d) Sentinel loop vs. End-of-file loop

2. Give a truth table that shows the (Boolean) value of each of the following Boolean expressions, for
every possible combination of “input” values. Hint: including columns for “intermediate” expressions
is helpful.

(a) not (P and Q)

(b) (not P) and Q

(c) (not P) or (not Q)

(d) (P and Q) or R

(e) (P or R) and (Q or R)

3. Write a while loop fragment that calculates the following values.

(a) Sum of the first n counting numbers: 1 � 2 � 3 � � � � � n

(b) Sum of the first n odd numbers: 1 � 3 � 5 � � � � � 2n � 1

(c) Sum of a series of numbers entered by the user until the value 999 is entered. Note: 999 should
not be part of the sum.

(d) The number of times a whole number n can be divided by 2 (using integer division) before reach-
ing 1 (i.e., log2n).

4. The Fibonacci sequence starts 1 � 1 � 2 � 3 � 5 � 8 � � � � . Each number in the sequence (after the first two) is the
sum of the previous two. Write a program that computes and outputs the nth Fibonacci number, where
n is a value entered by the user.

5. The National Weather Service computes the windchill index using the following formula.

35 � 74 � 0 � 6215T � 35 � 75
�
V0 � 16 � � 0 � 4275T

�
V 0 � 16 �

Where T is the temperature in degrees Fahrenheit, and V is the wind speed in miles per hour.

Write a program that prints a nicely formatted table of windchill values. Rows should represent wind
speed for 0 to 50 in 5 mph increments, and the columns represent temperatures from -20 to +60 in
10-degree increments.

6. Write a program that uses a while loop to determine how long it takes for an investment to double
at a given interest rate. The input will be an annualized interest rate, and the output is the number of
years it takes an investment to double. Note: the amount of the initial investment does not matter; you
can use $1.

7. The Syracuse (also called Collatz or Hailstone) sequence is generated by starting with a natural number
and repeatedly applying the following function until reaching 1.

syr
�
x � �

�
x

�
2 if x is even

3x � 1 if x is odd

For example, the Syracuse sequence starting with 5 is: 5 � 16 � 8 � 4 � 2 � 1. It is an open question in mathe-
matics whether this sequence will always go to 1 for every possible starting value.

Write a program that gets a starting value from the user and then prints the Syracuse sequence for that
starting value.

136 CHAPTER 8. CONTROL STRUCTURES, PART 2

8. A postive whole number n � 2 is prime if no number between 2 and � n (inclusive) evenly divides n.
Write a program that accepts a value of n as input and determines if the value is prime. If n is not
prime, your program should quit as soon as it finds a value that evenly divides n.

9. Modify the previous program to find every prime number less than or equal to n.

10. The greatest common divisor (GCD) of two values can be computed using Euclid’s algorithm. Starting
with the values m and n, we repeatedly apply the formula: n, m = m, n%m until m is 0. At that
point, n is the GCD of the original m and n. Write a program that finds the GCD of two numbers using
this algorithm.

11. Write a program that computes the fuel efficiency of a multi-leg journey. The program will first prompt
for the starting odometer reading and then get information about a series of legs. For each leg, the
user enters the current odometer reading and the amount of gas used (separated by a space). The user
signals the end of the trip with a blank line. The program should print out the miles per gallon achieved
on each leg and the total MPG for the trip.

12. Modify the previous program to get its input from a file.

13. Heating and cooling degree-days are measures used by utility companies to estimate energy require-
ments. If the average temperature for a day is below 60, then the number of degrees below 60 is added
to the heating degree-days. If the temperature is above 80, the amount over 80 is added to the cooling
degree-days. Write a program that accepts a sequence of average daily temps and computes the running
total of cooling and heating degree-days. The program should print these two totals after all the data
has been processed.

14. Modify the previous program to get its input from a file.

15. Write a program that graphically plots a regression line, that is, the line with the best fit through a
collection of points. First ask the user to specify the data points by clicking on them in a graphics
window. To find the end of input, place a small rectangle labelled “Done” in the lower left corner of
the window; the program will stop gathering points when the user clicks inside that rectangle.

The regression line is the line with the following equation:

y � ȳ � m
�
x � x̄ �

where

m �
∑xiyi � n x̄ ȳ

∑x2
i � n x̄2

x̄ is the mean of the x-values and ȳ is the mean of the y-values.

As the user clicks on points, the program should draw them in the graphics window and keep track of
the count of input values and the running sum of x, y, x2 and xy values. When the user clicks inside the
“Done” rectangle, the program then computes value of y (using the equations above) correponding to
the x values at the left and right edges of the window to compute the endpoints of the regression line
spanning the window. After the line is drawn, the program will pause for another mouse click before
closing the window and quitting.

Chapter 9

Simulation and Design

You may not realize it, but you have reached a significant milestone in the journey to becoming a computer
scientist. You now have all the tools to write programs that solve interesting problems. By interesting, I mean
problems that would be difficult or impossible to solve without the ability to write and implement computer
algorithms. You are probably not yet ready to write the next great killer application, but you can do some
nontrivial computing.

One particularly powerful technique for solving real-world problems is simulation. Computers can model
real-world processes to provide otherwise unobtainable information. Computer simulation is used every
day to perform myriad tasks such as predicting the weather, designing aircraft, creating special effects for
movies, and entertaining video game players, to name just a few. Most of these applications require extremely
complex programs, but even relatively modest simulations can sometimes shed light on knotty problems.

In this chapter we are going to develop a simple simulation of the game of racquetball. Along the way,
you will learn some important design and implementation strategies that will help you in tackling your own
problems.

9.1 Simulating Racquetball

9.1.1 A Simulation Problem

Suzie Programmer’s friend, Denny Dibblebit, plays racquetball. Over years of playing, he has noticed a
strange quirk in the game. He often competes with players who are just a little bit better than he is. In the
process, he always seems to get thumped, losing the vast majority of matches. This has led him to question
what is going on. On the surface, one would think that players who are slightly better should win slightly
more often, but against Denny, they seem to win the lion’s share.

One obvious possibility is that Denny Dibblebit’s problem is in his head. Maybe his mental game isn’t
up to par with his physical skills. Or perhaps the other players are really much better than he is, and he just
refuses to see it.

One day, Denny was discussing racquetball with Suzie, when she suggested another possibility. Maybe it
is the nature of the game itself that small differences in ability lead to lopsided matches on the court. Denny
was intrigued by the idea; he didn’t want to to waste money on an expensive sports psychologist if it wasn’t
going to help. But how could he figure out if the problem was mental or just part of the game?

Suzie suggested she could write a computer program to simulate certain aspects of racquetball. Using the
simulation, they could let the computer model thousands of games between players of differing skill levels.
Since there would not be any mental aspects involved, the simulation would show whether Denny is losing
more than his share of matches.

Let’s write our own racquetball simulation and see what Suzie and Denny discovered.

137

138 CHAPTER 9. SIMULATION AND DESIGN

9.1.2 Program Specification

Racquetball is a sport played between two players using racquets to strike a ball in a four-walled court. It
has aspects similar to many other ball and racquet games such as tennis, volleyball, badminton, squash, table
tennis, etc. We don’t need to understand all the rules of racquetball to write the program, just the basic outline
of the game.

To start the game, one of the players puts the ball into play—this is called serving. The players then
alternate hitting the ball to keep it in play; this is a rally. The rally ends when one of the players fails to hit a
legal shot. The player who misses the shot loses the rally. If the loser is the player who served, then service
passes to the other player. If the server wins the rally, a point is awarded. Players can only score points during
their service. The first player to reach 15 points wins the game.

In our simulation, the ability-level of the players will be represented by the probability that the player
wins the rally when he or she serves. Thus, players with a 0.6 probability win a point on 60% of their serves.
The program will prompt the user to enter the service probability for both players and then simulate multiple
games of racquetball using those probabilities. The program will then print a summary of the results.

Here is a detailed specification:

Input The program first prompts for and gets the service probabilities of the two players (called “Player A”
and “Player B”). Then the program prompts for and gets the number of games to be simulated.

Output The program will provide a series of initial prompts such as the following:

What is the prob. player A wins a serve?
What is the prob. player B wins a serve?
How many games to simulate?

The program will print out a nicely formatted report showing the number of games simulated and the
number of wins and winning percentage for each player. Here is an example:

Games Simulated: 500
Wins for A: 268 (53.6%)
Wins for B: 232 (46.4%)

Notes: All inputs are assumed to be legal numeric values, no error or validity checking is required.

In each simulated game, player A serves first.

9.2 Random Numbers

Our simulation program will have to deal with uncertain events. When we say that a player wins 50% of the
serves, that does not mean that every other serve is a winner. It’s more like a coin toss. Overall, we expect
that half the time the coin will come up heads and half the time it will come up tails, but there is nothing to
prevent a run of five tails in a row. Similarly, our racquetball player should win or lose rallies randomly. The
service probability provides a likelihood that a given serve will be won, but there is no set pattern.

Many simulations share this property of requiring events to occur with a certain likelihood. A driving
simulation must model the unpredictability of other drivers; a bank simulation has to deal with the random
arrival of customers. These sorts of simulations are sometimes called Monte Carlo algorithms, because the
results depend on “chance” probabilities. Of course, you know that there is nothing random about computers;
they are instruction-following machines. How can computer programs model seemingly random happenings?

Simulating randomness is a well-studied problem in computer science. Remember the chaos program
from Chapter 1? The numbers produced by that program seemed to jump around randomly between zero and
one. This apparent randomness came from repeatedly applying a function to generate a sequence of numbers.
A similar approach can be used to generate random (actually pseudorandom) numbers.

A pseudorandom number generator works by starting with some seed value. This value is fed to a function
to produce a “random” number. The next time a random number is needed, the current value is fed back into

9.2. RANDOM NUMBERS 139

the function to produce a new number. With a carefully chosen function, the resulting sequence of values
looks essentially random. Of course, if you start the process over again with the same seed value, you end up
with exactly the same sequence of numbers. It’s all determined by the generating function and the value of
the seed.

Python provides a library module that contains a number of useful functions for generating pseudorandom
numbers. The functions in this module derive an initial seed value from the date and time when the module
is loaded, so you get a different seed value each time the program is run. This means that you will also get a
unique sequence of pseudorandom values. The two functions of greatest interest to us are randrange and
random.

The randrange function is used to select a pseudorandom int from a given range. It can be used
with one, two or three parameters to specify a range exactly as with the range function. For example,
randrange(1,6) returns some number from the range [1,2,3,4,5], and randrange(5,105,5)
returns a multiple of 5 between 5 and 100, inclusive. (Remember, ranges go up to, but not including, the
stopping value.)

Each call to randrange generates a new pseudorandom int. Here is an interactive session that shows
randrange in action.

>>> from random import randrange
>>> randrange(1,6)
3
>>> randrange(1,6)
3
>>> randrange(1,6)
5
>>> randrange(1,6)
5
>>> randrange(1,6)
5
>>> randrange(1,6)
1
>>> randrange(1,6)
5
>>> randrange(1,6)
4
>>> randrange(1,6)
2

Notice it took ten calls to randrange to eventually generate every number in the range 1–5. The value 5
came up almost half of the time. This shows the probabilistic nature of random numbers. Over the long haul,
this function produces a uniform distribution, which means that all values will appear an (approximately)
equal number of times.

The random function can be used to generate pseudorandom floating point values. It requires no param-
eters and returns values uniformly distributed between 0 and 1 (including 0, but excluding 1). Here are some
interactive examples.

>>> from random import random
>>> random()
0.545146406725
>>> random()
0.221621655814
>>> random()
0.928877335157
>>> random()
0.258660828538
>>> random()
0.859346793436

140 CHAPTER 9. SIMULATION AND DESIGN

The name of the module (random) is the same as the name of the function, which gives rise to the funny-
looking import line.

Our racquetball simulation can make use of the random function to determine whether or not a player
wins a serve. Let’s look at a specific example. Suppose a player’s service probability is 0.70. This means that
they should win 70% of their serves. You can imagine a decision in the program something like this:

if <player wins serve>:
score = score + 1

We need to insert a probabilistic condition that will succeed 70% of the time.
Suppose we generate a random value between 0 and 1. Exactly 70% of the interval 0 � � � 1 is to the left of

0.7. So 70% of the time the random number will be � 0.7, and it will be � 0.7 the other 30% of the time. (The
� goes on the upper end, because the random generator can produce a 0, but never a 1.) In general, if prob
represents the probability that the player wins a serve, the condition random() < prob will succeed with
just the right probability. Here is how the decision will look:

if random() < prob:
score = score + 1

9.3 Top-Down Design

Now you have the complete specification for our simulation and the necessary knowledge of random numbers
to get the job done. Go ahead and take a few minutes to write up the program; I’ll wait.

OK, seriously, this is a more complicated program than you’ve probably attempted so far. You may
not even know where to begin. If you’re going to make it through with minimal frustration, you’ll need a
systematic approach.

One proven technique for tackling complex problems is called top-down design. The basic idea is to start
with the general problem and try to express a solution in terms of smaller problems. Then each of the smaller
problems is attacked in turn using the same technique. Eventually the problems get so small that they are
trivial to solve. Then you just put all the pieces back together and, voilà, you’ve got a program.

9.3.1 Top-Level Design

Top-down design is easier to illustrate than it is to define. Let’s give it a try on our racquetball simulation
and see where it takes us. As always, a good start is to study the program specification. In very broad brush
strokes, this program follows the basic Input-Process-Output pattern. We need to get the simulation inputs
from the user, simulate a bunch of games, and print out a report. Here is a basic algorithm.

Print an Introduction
Get the inputs: probA, probB, n
Simulate n games of racquetball using probA and probB
Print a report on the wins for playerA and playerB

Now that we’ve got an algorithm, we’re ready to write a program. I know what you’re thinking: this
design is too high-level; you don’t have any idea yet how it’s all going to work. That’s OK. Whatever we
don’t know how to do, we’ll just ignore for now. Imagine that all of the components you need to implement
the algorithm have already been written for you. Your job is to finish this top-level algorithm using those
components.

First we have to print an introduction. I think I know how to do this. It just requires a few print statements,
but I don’t really want to bother with it right now. It seems an unimportant part of the algorithm. I’ll
procrastinate and pretend that someone else will do it for me. Here’s the beginning of the program.

def main():
printInstructions()

9.3. TOP-DOWN DESIGN 141

Do you see how this works. I’m just assuming there is a printInstructions function that takes care of
printing the instructions. That step was easy! Let’s move on.

Next, I need to get some inputs from the user. I also know how to do that—I just need a few input
statements. Again, that doesn’t seem very interesting, and I feel like putting off the details. Let’s assume that
a component already exists to solve that problem. We’ll call the function getInputs. The point of this
function is to get values for variables probA, probB and n. The function must return these values for the
main program to use. Here is our program so far:

def main():
printInstructions()
probA, probB, n = getInputs()

We’re making progress, let’s move on to the next line.
Here we’ve hit the crux of the problem. We need to simulate n games of racquetball using the values of

probA, and probB. This time, I really don’t have a very good idea how that will even be accomplished.
Let’s procrastinate again and push the details off into a function. (Maybe we can get someone else to write
that part for us later.) But what should we put into main? Let’s call our function simNGames. We need to
figure out what the call of this function looks like.

Suppose you were asking a friend to actually carry out a simulation of n games. What information would
you have to give him? Your friend would need to know how many games he was supposed to simulate and
what the values of probA and probB should be for those simulations. These three values will, in a sense,
be inputs to the function.

What information do you need to get back from your friend? Well, in order to finish out the program
(print a report) you need to know how many games were won by player A and how many games were won by
Player B. These must be outputs from the simNGames function. Remember in the discussion of functions
in Chapter 6, I said that parameters were used as function inputs, and return values serve as function outputs.
Given this analysis, we now know how the next step of the algorithm can be coded.

def main():
printInstructions()
probA, probB, n = getInputs()
winsA, winsB = simNGames(n, probA, probB)

Are you getting the hang of this? The last step is to print a report. If you told your friend to type up the
report, you would have to tell him how many wins there were for each player; these values are inputs to the
function. Here’s the complete program.

def main():
printInstructions()
probA, probB, n = getInputs()
winsA, winsB = simNGames(n, probA, probB)
printSummary(winsA, winsB)

That wasn’t very hard. The main function is only five lines long, and the program looks like a more precise
formulation of the rough algorithm.

9.3.2 Separation of Concerns

Of course, the main function alone won’t do very much; we’ve put off all of the interesting details. In fact,
you may think that we have not yet accomplished anything at all, but that is far from true.

We have broken the original problem into four independent tasks: printInstructions,getInputs,
simNGames and printSummary. Further, we have specified the name, parameters and expected return
values of the functions that perform these tasks. This information is called the interface or signature of a
function.

Having signatures allows us to tackle pieces independently. For the purposes of main, we don’t care how
simNGames does its job. The only concern is that, when given the number of games to simulate and the two

142 CHAPTER 9. SIMULATION AND DESIGN

probabilities, it must hand back the correct number of wins for each player. The main function only cares
what each (sub-)function does.

Our work so far can be represented as a structure chart (also called a module hierarchy chart). Figure 9.1
illustrates. Each component in the design is a rectangle. A line connecting two rectangles indicates that the
one above uses the one below. The arrows and annotations show the interfaces between the components in
terms of information flow.

probA
probB
n

probA
probB
n winsA

winsB

winsA
winsB

main

printIntro getInputs simNGames printSummary

Figure 9.1: First-level structure chart for racquetball simulation.

At each level of a design, the interface tells us which details of the lower level are important. Anything
else can be ignored (for the moment). The general process of determining the important characteristics of
something and ignoring other details is called abstraction. Abstraction is the fundamental tool of design. You
might view the entire process of top-down design as a systematic method for discovering useful abstractions.

9.3.3 Second-Level Design

Now all we need to do is repeat the design process for each of the remaining components. Let’s take them
in order. The printIntro function should print an introduction to the program. Let’s compose a suitable
sequence of print statements.

def printIntro():
print "This program simulates a game of racquetball between two"
print ’players called "A" and "B". The abilities of each player is’
print "indicated by a probability (a number between 0 and 1) that"
print "the player wins the point when serving. Player A always"
print "has the first serve."

Notice the second line. I wanted to put double quotes around “A” and “B,” so the entire string is enclosed in
apostrophes. This function comprises only primitive Python instructions. Since we didn’t introduce any new
functions, there is no change to our structure chart.

Now let’s tackle getInputs. We need to prompt for and get three values, which are returned to the
main program. Again, this is simple to code.

def getInputs():
RETURNS the three simulation parameters probA, probB and n
a = input("What is the prob. player A wins a serve? ")
b = input("What is the prob. player B wins a serve? ")
n = input("How many games to simulate? ")
return a, b, n

Notice that I have taken some shortcuts with the variable names. Remember, variables inside of a function
are local to that function. This function is so short, it’s very easy to see what the three values represent. The
main concern here is to make sure the values are returned in the correct order to match with the interface we
established between getInputs and main.

9.3. TOP-DOWN DESIGN 143

9.3.4 Designing simNGames

Now that we are getting some experience with the top-down design technique, we are ready to try our hand at
the real problem, simNGames. This one requires a bit more thought. The basic idea is to simulate n games
and keep track of how many wins there are for each player. Well, “simulate n games” sounds like a counted
loop, and tracking wins sounds like the job for a couple of accumulators. Using our familiar patterns, we can
piece together an algorithm.

Initialize winsA and winsB to 0
loop n times

simulate a game
if playerA wins

Add one to winsA
else

Add one to winsB

It’s a pretty rough design, but then so was our top-level algorithm. We’ll fill in the details by turning it into
Python code.

Remember, we already have the signature for our function.

def simNGames(n, probA, probB):
Simulates n games and returns winsA and winsB

We’ll add to this by initializing the two accumulator variables and adding the counted loop heading.

def simNGames(n, probA, probB):
Simulates n games and returns winsA and winsB
winsA = 0
winsB = 0
for i in range(n):

The next step in the algorithm calls for simulating a game of racquetball. I’m not quite sure how to do
that, so as usual, I’ll put off the details. Let’s just assume there’s a function called simOneGame to take care
of this.

We need to figure out what the interface for this function will be. The inputs for the function seem
straightforward. In order to accurately simulate a game, we need to know what the probabilities are for each
player. But what should the output be? In the next step of the algorithm, we need to know who won the game.
How do you know who won? Generally, you look at the final score.

Let’s have simOneGame return the final scores for the two players. We can update our structure chart
to reflect these decisions. The result is shown in Figure 9.2. Translating this structure into code yields this
nearly completed function:

def simNGames(n, probA, probB):
Simulates n games and returns winsA and winsB
winsA = 0
winsB = 0
for i in range(n):

scoreA, scoreB = simOneGame(probA, probB)

Finally, we need to check the scores to see who won and update the appropriate accumulator. Here is the
result.

def simNGames(n, probA, probB):
winsA = winsB = 0
for i in range(n):

scoreA, scoreB = simOneGame(probA, probB)
if scoreA > scoreB:

winsA = winsA + 1

144 CHAPTER 9. SIMULATION AND DESIGN

probA
probB
n

probA
probB
n winsA

winsB

winsA
winsB

simOneGame

probA
probB

scoreA
scoreB

main

printIntro getInputs simNGames printSummary

Figure 9.2: Level 2 structure chart for racquetball simulation.

else:
winsB = winsB + 1

return winsA, winsB

9.3.5 Third-Level Design

Everything seems to be coming together nicely. Let’s keep working on the guts of the simulation. The
next obvious point of attack is simOneGame. Here’s where we actually have to code up the logic of the
racquetball rules. Players keep doing rallies until the game is over. That suggests some kind of indefinite
loop structure; we don’t know how many rallies it will take before one of the players gets to 15. The loop just
keeps going until the game is over.

Along the way, we need to keep track of the score(s), and we also need to know who is currently serving.
The scores will probably just be a couple of int-valued accumulators, but how do we keep track of who’s
serving? It’s either player A or player B. One approach is to use a string variable that stores either "A" or
"B". It’s also an accumulator of sorts, but to update its value, we just switch it from one value to the other.

That’s enough analysis to put together a rough algorithm. Let’s try this:

Initialize scores to 0
Set serving to "A"
Loop while game is not over:

Simulate one serve of whichever player is serving
update the status of the game

Return scores

It’s a start, at least. Clearly there’s still some work to be done on this one.
We can quickly fill in the first couple steps of the algorithm to get the following.

def simOneGame(probA, probB):
scoreA = 0
scoreB = 0
serving = "A"
while <condition>:

The question at this point is exactly what the condition will be. We need to keep looping as long as the
game is not over. We should be able to tell if the game is over by looking at the scores. We discussed a

9.3. TOP-DOWN DESIGN 145

number of possibilities for this condition in the previous chapter, some of which were fairly complex. Let’s
hide the details in another function, gameOver, that looks at the scores and returns true (1) if the game is
over, and false (0) if it is not. That gets us on to the rest of the loop for now.

Figure 9.3 shows the structure chart with our new function. The code for simOneGame now looks like
this:

def simOneGame(probA, probB):
scoreA = 0
scoreB = 0
serving = "A"
while not gameOver(scoreA, scoreB):

probA
probB
n

probA
probB
n winsA

winsB

winsA
winsB

simOneGame

probA
probB

scoreA
scoreB

main

scoreA
scoreB true|false

printIntro getInputs simNGames printSummary

gameOver

Figure 9.3: Level 3 structure chart for racquetball simulation.

Inside the loop, we need to do a single serve. Remember, we are going to compare a random number to a
probability in order to determine if the server wins the point (random() < prob). The correct probability
to use is determined by the value of serving. We will need a decision based on this value. If A is serving,
then we need to use A’s probability, and, based on the result of the serve, update either A’s score or change
the service to B. Here is the code:

if serving == "A":
if random() < probA: # A wins the serve

scoreA = scoreA + 1
else: # A loses the serve

serving = "B"

Of course, if A is not serving, we need to do the same thing, only for B. We just need to attach a mirror
image else clause.

if serving == "A":
if random() < probA: # A wins the serve

scoreA = scoreA + 1

146 CHAPTER 9. SIMULATION AND DESIGN

else: # A loses serve
serving = "B"

else:
if random() < probB: # B wins the serve

scoreB = scoreB + 1
else: # B loses the serve

serving = "A"

That pretty much completes the function. It got a bit complicated, but seems to reflect the rules of the
simulation as they were laid out. Putting the function together, here is the result.

def simOneGame(probA, probB):
scoreA = 0
scoreB = 0
serving = "A"
while gameNotOver(scoreA, scoreB):

if serving == "A":
if random() < probA:

scoreA = scoreA + 1
else:

serving = "B"
else:

if random() < probB:
scoreB = scoreB + 1

else:
serving = "A"

return scoreA, scoreB

9.3.6 Finishing Up

Whew! We have just one more troublesome function left, gameOver. Here is what we know about it so far.

def gameOver(a,b):
a and b represent scores for a racquetball game
RETURNS true if the game is over, false otherwise.

According to the rules for our simulation, a game is over when either player reaches a total of 15. We can
check this with a simple Boolean condition.

def gameOver(a,b):
a and b represent scores for a racquetball game
RETURNS true if the game is over, false otherwise.
return a==15 or b==15

Notice how this function directly computes and returns the Boolean result all in one step.
We’ve done it! Except for printSummary, the program is complete. Let’s fill in the missing details

and call it a wrap. Here is the complete program from start to finish:

rball.py
from random import random

def main():
printIntro()
probA, probB, n = getInputs()
winsA, winsB = simNGames(n, probA, probB)
printSummary(winsA, winsB)

9.3. TOP-DOWN DESIGN 147

def printIntro():
print "This program simulates a game of racquetball between two"
print ’players called "A" and "B". The abilities of each player is’
print "indicated by a probability (a number between 0 and 1) that"
print "the player wins the point when serving. Player A always"
print "has the first serve."

def getInputs():
Returns the three simulation parameters
a = input("What is the prob. player A wins a serve? ")
b = input("What is the prob. player B wins a serve? ")
n = input("How many games to simulate? ")
return a, b, n

def simNGames(n, probA, probB):
Simulates n games of racquetball between players whose
abilities are represented by the probability of winning a serve.
RETURNS number of wins for A and B
winsA = winsB = 0
for i in range(n):

scoreA, scoreB = simOneGame(probA, probB)
if scoreA > scoreB:

winsA = winsA + 1
else:

winsB = winsB + 1
return winsA, winsB

def simOneGame(probA, probB):
Simulates a single game or racquetball between players whose
abilities are represented by the probability of winning a serve.
RETURNS final scores for A and B
serving = "A"
scoreA = 0
scoreB = 0
while not gameOver(scoreA, scoreB):

if serving == "A":
if random() < probA:

scoreA = scoreA + 1
else:

serving = "B"
else:

if random() < probB:
scoreB = scoreB + 1

else:
serving = "A"

return scoreA, scoreB

def gameOver(a, b):
a and b represent scores for a racquetball game
RETURNS true if the game is over, false otherwise.
return a==15 or b==15

def printSummary(winsA, winsB):
Prints a summary of wins for each player.

148 CHAPTER 9. SIMULATION AND DESIGN

n = winsA + winsB
print "\nGames simulated:", n
print "Wins for A: %d (%0.1f%%)" % (winsA, float(winsA)/n*100)
print "Wins for B: %d (%0.1f%%)" % (winsB, float(winsB)/n*100)

if __name__ == ’__main__’: main()

You might take notice of the string formatting in printSummary. Since a percent sign normally marks the
beginning of a slot specifier, to get a normal percent sign at the end, I had to use a double percent %%.

9.3.7 Summary of the Design Process

You have just seen an example of top-down design in action. Now you can really see why it’s called top-down
design. We started at the highest level of our structure chart and worked our way down. At each level, we
began with a general algorithm and then gradually refined it into precise code. This approach is sometimes
called step-wise refinement. The whole process can be summarized in four steps:

1. Express the algorithm as a series of smaller problems.

2. Develop an interface for each of the small problems.

3. Detail the algorithm by expressing it in terms of its interfaces with the smaller problems.

4. Repeat the process for each smaller problem.

Top-down design is an invaluable tool for developing complex algorithms. The process may seem easy,
since I’ve walked you through it step-by-step. When you first try it out for yourself, though, things probably
won’t go quite so smoothly. Stay with it—the more you do it, the easier it will get. Initially, you may think
writing all of those functions is a lot of trouble. The truth is, developing any sophisticated system is virtually
impossible without a modular approach. Keep at it, and soon expressing your own programs in terms of
cooperating functions will become second nature.

9.4 Bottom-Up Implementation

Now that we’ve got a program in hand, your inclination might be to run off, type the whole thing in, and give
it a try. If you do that, the result will probably be disappointment and frustration. Even though we have been
very careful in our design, there is no guarantee that we haven’t introduced some silly errors. Even if the code
is flawless, you’ll probably make some mistakes when you enter it. Just as designing a program one piece at
a time is easier than trying to tackle the whole problem at once, implementation is best approached in small
doses.

9.4.1 Unit Testing

A good way to approach the implementation of a modest size program is to start at the lower levels of the
structure chart and work your way up, testing each component as you complete it. Looking back at the
structure chart for our simulation, we could start with the gameOver function. Once this function is typed
into a module file, we can immediately import the file and test it. Here is a sample session testing out just this
function.

>>> import rball
>>> rball1.gameOver(0,0)
0
>>> rball1.gameOver(5,10)
0
>>> rball1.gameOver(15,3)
1

9.4. BOTTOM-UP IMPLEMENTATION 149

>>> rball1.gameOver(3,15)
1

I have selected test data that exercise all the important cases for the function. The first time it is called, the
score will be 0 to 0. The function correctly responds with 0 (false); the game is not over. As the game
progresses, the function will be called with intermediate scores. The second example shows that the function
again responded that the game is still in progress. The last two examples show that the function correctly
identifies that the game is over when either player reaches 15.

Having confidence that gameOver is functioning correctly, now we can go back and implement the
simOneGame function. This function has some probabilistic behavior, so I’m not sure exactly what the
output will be. The best we can do in testing it is to see that it behaves reasonably. Here is a sample session.

>>> import rball
>>> rball1.simOneGame(.5,.5)
(13, 15)
>>> rball1.simOneGame(.5,.5)
(15, 11)
>>> rball1.simOneGame(.3,.3)
(15, 11)
>>> rball1.simOneGame(.3,.3)
(11, 15)
>>> rball1.simOneGame(.4,.9)
(4, 15)
>>> rball1.simOneGame(.4,.9)
(1, 15)
>>> rball1.simOneGame(.9,.4)
(15, 3)
>>> rball1.simOneGame(.9,.4)
(15, 0)
>>> rball1.simOneGame(.4,.6)
(9, 15)
>>> rball1.simOneGame(.4,.6)
(6, 15)

Notice that when the probabilities are equal, the scores are close. When the probabilities are farther apart, the
game is a rout. That squares with how we think this function should behave.

We can continue this piecewise implementation, testing out each component as we add it into the code.
Software engineers call this process unit testing. Testing each function independently makes it easier to
spot errors. By the time you get around to testing the entire program, chances are that everything will work
smoothly.

Separating concerns through a modular design makes it possible to design sophisticated programs. Sep-
arating concerns through unit testing makes it possible to implement and debug sophisticated programs. Try
these techniques for yourself, and you’ll see that you are getting your programs working with less overall
effort and far less frustration.

9.4.2 Simulation Results

Finally, we can take a look at Denny Dibblebit’s question. Is it the nature of racquetball that small differences
in ability lead to large differences in the outcome? Suppose Denny wins about 60% of his serves and his
opponent is 5% better. How often should Denny win the game? Here’s an example run where Denny’s
opponent always serves first.

This program simulates a game of racquetball between two
players called "A" and "B". The abilities of each player is
indicated by a probability (a number between 0 and 1) that
the player wins the point when serving. Player A always

150 CHAPTER 9. SIMULATION AND DESIGN

has the first serve.

What is the prob. player A wins a serve? .65
What is the prob. player B wins a serve? .6
How many games to simulate? 5000

Games simulated: 5000
Wins for A: 3360 (67.2%)
Wins for B: 1640 (32.8%)

Even though there is only a small difference in ability, Denny should win only about one in three games. His
chances of winning a three- or five-game match are pretty slim. Apparently Denny is winning his share. He
should skip the shrink and work harder on his game.

Speaking of matches, expanding this program to compute the probability of winning multi-game matches
would be a great exercise. Why don’t you give it a try?

9.5 Other Design Techniques

Top-down design is a very powerful technique for program design, but it is not the only way to go about
creating a program. Sometimes you may get stuck at a step and not know how to go about refining it. Or the
original specification might be so complicated that refining it level-by-level is just too daunting.

9.5.1 Prototyping and Spiral Development

Another approach to design is to start with a simple version of a program or program component and then
try to gradually add features until it meets the full specification. The initial stripped-down version is called
a prototype. Prototyping often leads to a sort of spiral development process. Rather than taking the entire
problem and proceeding through specification, design, implementation and testing, we first design, implement
and test a prototype. Then new features are designed, implemented and tested. We make many mini-cycles
through the development process as the prototype is incrementally expanded into the final program.

As an example, consider how we might have approached the racquetball simulation. The very essence of
the problem is simulating a game of racquetball. We might have started with just the simOneGame function.
Simplifying even further, our prototype could assume that each player has a 50-50 chance of winning any
given point and just play a series of 30 rallies. That leaves the crux of the problem, which is handling the
awarding of points and change of service. Here is an example prototype:

from random import random

def simOneGame():
scoreA = 0
scoreB = 0
serving = "A"
for i in range(30):

if serving == "A":
if random() < .5:

scoreA = scoreA + 1
else:

serving = "B"
else:

if random() < .5:
scoreB = scoreB + 1

else:
serving = "A"

print scoreA, scoreB

9.5. OTHER DESIGN TECHNIQUES 151

if __name__ == ’__main__’: simOneGame()

You can see that I have added a print statement at the bottom of the loop. Printing out the scores as we go
along allows us to see that the prototype is playing a game. Here is some example output.

1 0
1 0
1 0
2 0
2 0
2 1
2 1
3 1
3 1
3 1
3 1
3 2
...
7 6
7 7
7 8

It’s is not pretty, but it shows that we have gotten the scoring and change of service working.
We could then work on augmenting the program in phases. Here’s a project plan.

Phase 1 Initial prototype. Play 30 rallies where the server always has a 50% chance of winning. Print out
the scores after each rally.

Phase 2 Add two parameters to represent different probabilities for the two players.

Phase 3 Play the game until one of the players reaches 15 points. At this point, we have a working simulation
of a single game.

Phase 4 Expand to play multiple games. The output is the count of games won by each player.

Phase 5 Build the complete program. Add interactive inputs and a nicely formatted report of the results.

Spiral development is particularly useful when dealing with new or unfamiliar features or technologies.
It’s helpful to “get your hands dirty” with a quick prototype just to see what you can do. As a novice
programmer, everything may seem new to you, so prototyping might prove useful. If full-blown top-down
design does not seem to be working for you, try some spiral development.

9.5.2 The Art of Design

It is important to note that spiral development is not an alternative to top-down design. Rather, they are com-
plementary approaches. When designing the prototype, you will still use top-down techniques. In Chapter 12,
you will see yet another approach called object-oriented design.

There is no “one true way” of design. The truth is that good design is as much a creative process as a
science. Designs can be meticulously analyzed after the fact, but there are no hard and fast rules for producing
a design. The best software designers seem to employ a variety of techniques. You can learn about techniques
by reading books like this one, but books can’t teach how and when to apply them. That you have to learn for
yourself through experience. In design as in almost anything, the key to success is practice.

152 CHAPTER 9. SIMULATION AND DESIGN

9.6 Exercises

1. Draw the top levels of a structure chart for a program having the following main function.

def main():
printIntro()
length, width = getDimensions()
amtNeeded = computeAmount(length,width)
printReport(length, width, amtNeeded)

2. Write an expression using either random or randrange to calculate the following.

� A random int in the range 0–10
� A random float in the range -0.5–0.5
� A random number representing the roll of a six-sided die
� A random number representing the sum resulting from rolling two six-sided dice
� A random float in the range -10.0–10.0

3. Revise the racquetball simulation so that it keeps track of results for best of n game matches.

4. Revise the racquetball simulation to take shutouts into account. Your updated version should report for
both players the number of wins, percentage of wins, number of shutouts, and percentage of wins that
are shutouts.

5. Design and implement a simulation of the game of volleyball. Normal volleyball is played like rac-
quetball, in that a team can only score points when it is serving. Games are played to 15, but must be
won by at least two points.

6. College volleyball is now played using rally scoring. In this system, the team that wins a rally is
awarded a point, even if they were not the serving team. Games are played to a score of 21. Design
and implement a simulation of volleyball using rally scoring.

7. Design and implement a system that compares regular volleyball games to those using rally scoring.
Your program should be able to investigate whether rally scoring magnifies, reduces, or has no effect
on the relative advantage enjoyed by the better team.

8. Design and implement a simulation of some other racquet sport (e.g. tennis or table tennis).

9. Craps is a dice game played at many casinos. A player rolls a pair of normal six-sided dice. If the
initial roll is 2, 3 or 12, the player loses. If the roll is 7 or 11, the player wins. Any other initial roll
causes the player to “roll for point.” That is, the player keeps rolling the dice until either rolling a 7 or
re-rolling the value of the initial roll. If the player re-rolls the initial value before rolling a 7, it’s a win.
Rolling a 7 first is a loss.

Write a program to simulate multiple games of craps and estimate the probability that the player wins.
For example, if the player wins 249 out of 500 games, then the estimated probability of winning is
249

�
500 � 0 � 498

10. Blackjack (twenty-one) is a casino game played with cards. The goal of the game to draw cards that
total as close to 21 points as possible without going over. All face cards count as 10 points, aces count
as 1 or 11, and all other cards count their numeric value.

The game is played against a dealer. The player tries to get closer to 21 (without going over) than
the dealer. If the dealer busts (goes over 21) the player automatically wins (provided the player had
not already busted). The dealer must always take cards according to a fixed set of rules. The dealer
takes cards until he or she achieves a total of at least 17. If the dealer’s hand contains an ace, it will be
counted as 11 when that results in a total between 17 and 21 inclusive; otherwise, the ace is counted as
1.

9.6. EXERCISES 153

Write a program that simulates multiple games of blackjack and estimates the probability that the dealer
will bust.

11. A blackjack dealer always starts with one card showing. It would be useful for a player to know the
dealer’s bust probability (see previous problem) for each possible starting value. Write a simulation
program that runs multiple hands of blackjack for each possible starting value (ace–10) and estimates
the probability that the dealer busts for each starting value.

12. Monte Carlo techniques can be used to estimate the value of pi. Suppose you have a round dart board
that just fits inside of a square cabinet. If you throw darts randomly, the proportion that hit the dart
board vs. those that hit the cabinet (in the corners not covered by the board) will be determined by the
relative area of the dart board and the cabinet. If n is the total number of darts randomly thrown (that
land within the confines of the cabinet), and h is the number that hit the board, it is easy to show that

π � 4
� h
n

�

Write a program that accepts the “number of darts” as an input and then performs a simulation to
estimate π . Hint: you can use 2*random() - 1 to generate the x and y coordinates of a random
point inside a 2x2 square centered at

�
0 � 0 � . The point lies inside the inscribed circle if x2 � y2 � 1.

13. Write a program that performs a simulation to estimate the probability of rolling five-of-a-kind in a
single roll of five six-sided dice.

14. A random walk is a particular kind of probablistic simulation that models certain statistical systems
such as the Brownian motion of molecules. You can think of a one-dimensional random walk in terms
of coin flipping. Suppose you are standing on a very long straight sidewalk that extends both in front
of and behind you. You flip a coin. If it comes up heads, you take a step forward; tails means to take a
step backward.

Suppose you take a random walk of n steps. On average, how many steps away from the starting point
will you end up? Write a program to help you investigate this question.

15. Suppose you are doing a random walk (see previous problem) on the blocks of a city street. At each
“step” you choose to walk one block (at random) either forward, backward, left or right. In n steps,
how far do you expect to be from your starting point? Write a program to help answer this question.

16. Write a graphical program to trace a random walk (see previous two problems) in two dimensions.
In this simulation you should allow the step to be taken in any direction. You can generate a random
direction as an angle off of the x axis.

angle = random() * 2 * math.pi

The new x and y positions are then given by these formulas.

x = x + cos(angle)
y = y + sin(angle)

The program should take the number of steps as an input. Start your walker at the center of a 100x100
grid and draw a line that traces the walk as it progresses.

17. (Advanced) Here is a puzzle problem that can be solved with either some fancy analytic geometry
(calculus) or a (relatively) simple simulation.

Suppose you are located at the exact center of a cube. If you could look all around you in every
direction, each wall of the cube would occupy 1

6 of your field of vision. Suppose you move toward one
of the walls so that you are now half-way between it and the center of the cube. What fraction of your
field of vision is now taken up by the closest wall? Hint: use a Monte Carlo simulation that repeatedly
“looks” in a random direction and counts how many times it sees the wall.

154 CHAPTER 9. SIMULATION AND DESIGN

Chapter 10

Defining Classes

In the last three chapters, we have developed techniques for structuring the computations of a program. In
the next few chapters, we will take a look at techniques for structuring the data that our programs use. You
already know that objects are one important tool for managing complex data. So far, our programs have made
use of objects created from pre-defined classes such as Circle. In this chapter, you will learn how to write
your own classes so that you can create novel objects.

10.1 Quick Review of Objects

Remember back in Chapter 5, I defined an object as an active data type that knows stuff and can do stuff.
More precisely, an object consists of

1. A collection of related information.

2. A set of operations to manipulate that information.

The information is stored inside the object in instance variables. The operations, called methods, are func-
tions that “live” inside the object. Collectively, the instance variables and methods are called the attributes of
an object.

To take a now familiar example, a Circle object will have instance variables such as center, which
remembers the center point of the circle, and radius, which stores the length of the circle’s radius. The
methods of the circle will need this data to perform actions. The draw method examines the center and
radius to decide which pixels in a window should be colored. The move method will change the value of
center to reflect the new position of the circle.

Recall that every object is said to be an instance of some class. The class of the object determines what
attributes the object will have. Basically a class is a description of what its instances will know and do. New
objects are created from a class by invoking a constructor. You can think of the class itself as a sort of factory
for stamping out new instances.

Consider making a new circle object:

myCircle = Circle(Point(0,0), 20)

Circle, the name of the class, is used to invoke the constructor. This statement creates a new Circle
instance and stores a reference to it in the variable myCircle. The parameters to the constructor are used
to initialize some of the instance variables (namely center and radius) inside of myCircle. Once the
instance has been created, it is manipulated by calling on its methods:

myCircle.draw(win)
myCircle.move(dx, dy)
...

155

156 CHAPTER 10. DEFINING CLASSES

10.2 Example Program: Cannonball

Before launching into a detailed discussion of how to write your own classes, let’s take a short detour to see
how useful new classes can be.

10.2.1 Program Specification

Suppose we want to write a program that simulates the flight of a cannonball (or any other projectile such as
a bullet, baseball or shot put). We are particularly interested in finding out how far the cannonball will travel
when fired at various launch angles and initial velocities. The input to the program will be the launch angle
(in degrees), the initial velocity (in meters per second) and the initial height (in meters). The output will be
the distance that the projectile travels before striking the ground (in meters).

If we ignore the effects of wind resistance and assume that the cannon ball stays close to earth’s surface
(i.e., we’re not trying to put it into orbit), this is a relatively simple classical physics problem. The acceleration
of gravity near the earth’s surface is about 9.8 meters per second per second. That means if an object is thrown
upward at a speed of 20 meters per second, after one second has passed, its upward speed will have slowed to
20 � 9 � 8 � 10 � 2 meters per second. After another second, the speed will be only 0 � 4 meters per second, and
shortly thereafter it will start coming back down.

For those who know a little bit of calculus, it’s not hard to derive a formula that gives the position of our
cannonball at any given moment in its flight. Rather than take the calculus approach, however, our program
will use simulation to track the cannonball moment by moment. Using just a bit of simple trigonometry to
get started, along with the obvious relationship that the distance an object travels in a given amount of time
is equal to its rate times the amount of time (d � rt), we can solve this problem algorithmically.

10.2.2 Designing the Program

Let’s start by desigining an algorithm for this problem. Given the problem statement, it’s clear that we need
to consider the flight of the cannonball in two dimensions: height, so we know when it hits the ground, and
distance, to keep track of how far it goes. We can think of the position of the cannonball as a point

�
x � y � in a

2D graph where the value of y gives the height and the value of x gives the distance from the starting point.
Our simulation will have to update the position of the cannonball to account for its flight. Suppose the ball

starts at position
�
0 � 0 � , and we want to check its position, say, every tenth of a second. In that interval, it will

have moved some distance upward (positive y) and some distance forward (positive x). The exact distance in
each dimension is determined by its velocity in that direction.

Separating out the x and y components of the velocity makes the problem easier. Since we are ignoring
wind resistance, the x velocity remains constant for the entire flight. However, the y velocity changes over
time due to the influence of gravity. In fact, the y velocity will start out being positive and then become
negative as the cannonball starts back down.

Given this analysis, it’s pretty clear what our simulation will have to do. Here is a rough outline:

Input the simulation parameters: angle, velocity, height, interval.
Calculate the initial position of the cannonball: xpos, ypos
Calculate the initial velocities of the cannonball: xvel, yvel
While the cannonball is still flying:

update the values of xpos, ypos, and yvel for interval seconds
further into the flight

Output the distance traveled as xpos

Let’s turn this into a program using stepwise refinement.
The first line of the algorithm is straightforward. We just need an appropriate sequence of input state-

ments. Here’s a start:

def main():
angle = input("Enter the launch angle (in degrees): ")
vel = input("Enter the initial velocity (in meters/sec): ")

10.2. EXAMPLE PROGRAM: CANNONBALL 157

h0 = input("Enter the initial height (in meters): ")
time = input("Enter the time interval between position calculations: ")

Calculating the initial position for the cannonball is also easy. It will start at distance 0 and height h0.
We just need a couple assignment statements.

xpos = 0.0
ypos = h0

Next we need to calculate the x and y components of the initial velocity. We’ll need a little high-school
trigonometry. (See, they told you you’d use that some day.) If we consider the initial velocity as consisting of
some amount of change in y and and some amount of change in x, then these three components (velocity, x-
velocity and y-velocity) form a right triangle. Figure 10.1 illustrates the situation. If we know the magnitude
of the velocity and the launch angle (labeled theta, because the Greek letter θ is often used as the measure
of angles), we can easily calculate the magnitude of xvel by the equation xvel � velocitycostheta. A similar
formula (using sin theta) provides yvel.

yvel = velocity * sin(theta)velocity

theta

xvel = velocity * cos(theta)

Figure 10.1: Finding the x and y components of velocity.

Even if you don’t completely understand the trigonometry, the important thing is that we can translate
these formulas into Python code. There’s still one subtle issue to consider. Our input angle is in degrees, and
the Python math library uses radian measures. We’ll have to convert our angle before applying the formulas.
There are 2π radians in a circle (360 degrees); so theta � π � angle

180 . These three formulas give us the code for
computing the initial velocities:

theta = math.pi * angle / 180.0
xvel = velocity * math.cos(theta)
yvel = velocity * math.sin(theta)

That brings us to the main loop in our program. We want to keep updating the position and velocity of
the cannonball until it reaches the ground. We can do this by examining the value of ypos.

while ypos >= 0.0:

I used � � as the relationship so that we can start with the cannon ball on the ground (= 0) and still get the
loop going. The loop will quit as soon as the value of ypos dips just below 0, indicating the cannonball has
embedded itself slightly in the ground.

Now we arrive at the crux of the simulation. Each time we go through the loop, we want to update the
state of the cannonball to move it time seconds farther in its flight. Let’s start by considering movement in
the horizontal direction. Since our specification says that we can ignore wind resistance, the horizontal speed
of the cannonball will remain constant and is given by the value of xvel.

As a concrete example, suppose the ball is traveling at 30 meters per second and is currently 50 meters
from the firing point. In another second, it will go 30 more meters and be 80 meters from the firing point. If
the interval is only 0.1 second (rather than a full second), then the cannonball will only fly another 0 � 1 � 30 ��� 3
meters and be at a distance of 53 meters. You can see that the new distance traveled is always given by time
* xvel. To update the horizontal position, we need just one statement.

xpos = xpos + time * xvel

158 CHAPTER 10. DEFINING CLASSES

The situation for the vertical component is slightly more complicated, since gravity causes the y-velocity
to change over time. Each second, yvel must decrease by 9.8 meters per second, the acceleration of gravity.
In 0.1 seconds the velocity will decrease by 0 � 1

�
9 � 8 � � 0 � 98 meters per second. The new velocity at the end

of the interval is calculated as

yvel1 = yvel - time * 9.8

To calculate how far the cannonball travels during this interval, we need to know its average vertical
velocity. Since the acceleration due to gravity is constant, the average velocity will just be the average of the
starting and ending velocities: (yvel+yvel1)/2.0. Multiplying this average velocity by the amount of
time in the interval gives us the change in height.

Here is the completed loop:

while yvel >= 0.0:
xpos = xpos + time * xvel
yvel1 = yvel - time * 9.8
ypos = ypos + time * (yvel + yvel1)/2.0
yvel = yvel1

Notice how the velocity at the end of the time interval is first stored in the temporary variable yvel1. This is
done to preserve the initial yvel so that the average velocity can be computed from the two values. Finally,
the value of yvel is assigned its value at the end of the loop. This represents the correct vertical velocity of
the cannonball at the end of the interval.

The last step of our program simply outputs the distance traveled. Adding this step gives us the complete
program.

cball1.py
from math import pi, sin, cos

def main():
angle = input("Enter the launch angle (in degrees): ")
vel = input("Enter the initial velocity (in meters/sec): ")
h0 = input("Enter the initial height (in meters): ")
time = input("Enter the time interval between position calculations: ")

convert angle to radians
theta = (angle * pi)/180.0

set the intial position and velocities in x and y directions
xpos = 0
ypos = h0
xvel = vel * cos(theta)
yvel = vel * sin(theta)

loop until the ball hits the ground
while ypos >= 0:

calculate position and velocity in time seconds
xpos = xpos + time * xvel
yvel1 = yvel - time * 9.8
ypos = ypos + time * (yvel + yvel1)/2.0
yvel = yvel1

print "\nDistance traveled: %0.1f meters." % (xpos)

10.3. DEFINING NEW CLASSES 159

10.2.3 Modularizing the Program

You may have noticed during the design discussion that I employed stepwise refinement (top-down design)
to develop the program, but I did not divide the program into separate functions. We are going to modularize
the program in two different ways. First, we’ll use functions (a la top-down design).

While the final program is not too long, it is fairly complex for its length. One cause of the complexity is
that it uses ten variables, and that is a lot for the reader to keep track of. Let’s try dividing the program into
functional pieces to see if that helps. Here’s a version of the main algorithm using helper functions:

def main():
angle, vel, h0, time = getInputs()
xpos, ypos = 0, h0
xvel, yvel = getXYComponents(velocity, angle)
while ypos >= 0:

xpos, ypos, yvel = updateCannonBall(time, xpos, ypos, xvel, yvel)
print "\nDistance traveled: %0.1f meters." % (xpos)

It should be obvious what each of these functions does based on their names and the original program code.
You might take a couple of minutes to code up the three helper functions.

This second version of the main algorithm is certainly more concise. The number of variables has been
reduced to eight, since theta and yvel1 have been eliminated from the main algorithm. Do you see where
they went? The value of theta is only needed locally inside of getXYComponents. Similarly, yvel1 is
now local to updateCannonBall. Being able to hide some of the intermediate variables is a major benefit
of the separation of concerns provided by top-down design.

Even this version seems overly complicated. Look especially at the loop. Keeping track of the state of
the cannonball requires four pieces of information, three of which must change from moment to moment.
All four variables along with the value of time are needed to compute the new values of the three that
change. That results in an ugly function call having five parameters and three return values. An explosion of
parameters is often an indication that there might be a better way to organize a program. Let’s try another
approach.

The original problem specification itself suggests a better way to look at the variables in our program.
There is a single real-world cannonball object, but describing it in the current program requires four pieces
of information: xpos, ypos, xvel and yvel. Suppose we had a Projectile class that “understood”
the physics of objects like cannonballs. Using such a class, we could express the main algorithm in terms
of creating and updating a suitable object stored in a single variable. Using this object-based approach, we
might write main like this.

def main():
angle, vel, h0, time = getInputs()
cball = Projectile(angle, vel, h0)
while cball.getY() >= 0:

cball.update(time)
print "\nDistance traveled: %0.1f meters." % (cball.getX())

Obviously, this is a much simpler and more direct expression of the algorithm. The initial values of
angle, vel and h0 are used as parameters to create a Projectile called cball. Each time through
the loop, cball is asked to update its state to account for time. We can get the position of cball at
any moment by using its getX and getY methods. To make this work, we just need to define a suitable
Projectile class that implements the methods update, getX, and getY.

10.3 Defining New Classes

Before designing a Projectile class, let’s take an even simpler example to examine the basic ideas.

160 CHAPTER 10. DEFINING CLASSES

10.3.1 Example: Multi-Sided Dice

You know that a normal die (the singular of dice) is a cube and each face shows a number from one to six.
Some games employ nonstandard dice that may have fewer (e.g., four) or more (e.g., thirteen) sides. Let’s
design a general class MSDie to model multi-sided dice.1 We could use such an object in any number of
simulation or game programs.

Each MSDie object will know two things.

1. How many sides it has.

2. Its current value.

When a new MSDie is created, we specify how many sides it will have, n. We can then operate on the
die through three provided methods: roll, to set the die to a random value between 1 and n, inclusive;
setValue, to set the die to a specific value (i.e., cheat); and getValue, to see what the current value is.

Here is an interactive example showing what our class will do:

>>> die1 = MSDie(6)
>>> die1.getValue()
1
>>> die1.roll()
>>> die1.getValue()
4
>>> die2 = MSDie(13)
>>> die2.getValue()
1
>>> die2.roll()
>>> die2.getValue()
12
>>> die2.setValue(8)
>>> die2.getValue()
8

Do you see how this might be useful? I can define any number of dice having arbitrary numbers of sides.
Each die can be rolled independently and will always produce a random value in the proper range determined
by the number of sides.

Using our object-oriented terminology, we create a die by invoking the MSDie constructor and providing
the number of sides as a parameter. Our die object will keep track of this number internally using an instance
variable. Another instance variable will be used to store the current value of the die. Initially, the value of
the die will be set to be 1, since that is a legal value for any die. The value can be changed by the roll and
setRoll methods and returned from the getValue method.

Writing a definition for the MSDie class is really quite simple. A class is a collection of methods, and
methods are just functions. Here is the class definition for MSDie:

msdie.py
Class definition for an n-sided die.

from random import randrange

class MSDie:

def __init__(self, sides):
self.sides = sides
self.value = 1

1Obviously, the name MSDie is short for “Multi-Sided Die” and is not intended as a comment on any software giant, real or fictional,
which may or may not employ unfair monopolostic trade practices to the detriment of consumers.

10.3. DEFINING NEW CLASSES 161

def roll(self):
self.value = randrange(1,self.sides+1)

def getValue(self):
return self.value

def setValue(self, value):
self.value = value

As you can see, a class definition has a simple form:

class <class-name>:
<method-definitions>

Each method definition looks like a normal function definition. Placing the function inside a class makes it a
method of that class, rather than a stand-alone function.

Let’s take a look at the three methods defined in this class. You’ll notice that each method has a first
parameter named self. The first parameter of a method is special—it always contains a reference to the
object on which the method is acting. As usual, you can use any name you want for this parameter, but the
traditional name is self, so that is what I will always use.

An example might be helpful in making sense of self. Suppose we have a main function that executes
die1.setValue(8). A method invocation is a function call. Just as in normal function calls, Python
executes a four-step sequence:

1. The calling program (main) suspends at the point of the method application. Python locates the
approriate method defintion inside the class of the object to which the method is being applied. In this
case, control is transferring to the setValue method in the MSDie class, since die1 is an instance
of MSDie.

2. The formal parameters of the method get assigned the values supplied by the actual parameters of the
call. In the case of a method call, the first formal parameter corresponds to the object. In our example,
it is as if the following assignments are done before executing the method body:

self = die1
value = 8

3. The body of the method is executed.

4. Control returns to the point just after where the method was called, in this case, the statement immedi-
ately following die1.setValue(8).

Figure 10.2 illustrates the method-calling sequence for this example. Notice how the method is called with
one parameter (the value), but the method definition has two parameters, due to self. Generally speaking,
we would say setValue requires one parameter. The self parameter in the definition is a bookkeeping
detail. Some languages do this implicitly; Python requires us to add the extra parameter. To avoid confusion,
I will always refer to the first formal parameter of a method as the self parameter and any others as normal
parameters. So, I would say setValue uses one normal parameter.

class MSDie:
 ...
 def setValue(self,value):
 self.value = value

def main():
 die1 = MSDie(12)
 die1.setValue(8)
 print die1.getValue()

self=die1; value=8

Figure 10.2: Flow of control in call: die1.setValue(8).

162 CHAPTER 10. DEFINING CLASSES

OK, so self is a parameter that represents an object. But what exactly can we do with it? The main
thing to remember is that objects contain their own data. Instance variables provide storage locations inside
of an object. Just as with regular variables, instance variables are accessed by name. We can use our familiar
dot notation: � object � . � instance-var � . Look at the definition of setValue; self.value refers to
the instance variable value that is stored inside the object. Each instance of a class has its own instance
variables, so each MSDie object has its very own value.

Certain methods in a class have special meaning to Python. These methods have names that begin and
end with two underscores. The special method init is the object constructor. Python calls this method
to initialize a new MSDie. The role of init is to provide initial values for the instance variables of an
object.

From outside the class, the constructor is referred to by the class name.

die1 = MSDie(6)

When executing this statement, Python creates a new MSDie and executes init on that object. The net
result is that die1.sides is set to 6 and die1.value is set to 1.

The power of instance variables is that we can use them to remember the state of a particular object, and
this information then gets passed around the program as part of the object. The values of instance variables
can be referred to again in other methods or even in successive calls to the same method. This is different
from regular local function variables whose values disappear once the function terminates.

Here is a simple illustration:

>>> die1 = Die(13)
>>> print die1.getValue()
1
>>> die1.setValue(8)
>>> print die1.getValue()
8

The call to the constructor sets the instance variable die1.value to 1. The next line prints out this value.
The value set by the constructor persists as part of the object, even though the constructor is over and done
with. Similarly, executing die1.setValue(8) changes the object by setting its value to 8. When the
object is asked for its value the next time, it responds with 8.

That’s just about all there is to know about defining new classes in Python. Now it’s time to put this new
knowledge to use.

10.3.2 Example: The Projectile Class

Returning to the cannonball example, we want a class that can represent projectiles. This class will need a
contructor to initialize instance variables, an update method to change the state of the projectile, and getX
and getY methods so that we can find the current position.

Let’s start with the constructor. In the main program, we will create a cannonball from the initial angle,
velocity and height.

cball = Projectile(angle, vel, h0)

The Projectile class must have an init method that uses these values to initialize the instance
variables of cball. But what should the instance variables be? Of course, they will be the four pieces of
information that characterize the flight of the cannonball: xpos, ypos, xvel and yvel. We will calculate
these values using the same formulas that were in the original program.

Here is how our class looks with the constructor:

class Projectile:

def __init__(self, angle, velocity, height):
self.xpos = 0.0
self.ypos = height

10.3. DEFINING NEW CLASSES 163

theta = math.pi * angle / 180.0
self.xvel = velocity * math.cos(theta)
self.yvel = velocity * math.sin(theta)

Notice how we have created four instance variables inside the object using the self dot notation. The value
of theta is not needed after init terminates, so it is just a normal (local) function variable.

The methods for accessing the position of our projectiles are straightforward; the current position is given
by the instance variables xpos and ypos. We just need a couple methods that return these values.

def getX(self):
return self.xpos

def getY(self):
return self.ypos

Finally, we come to the update method. This method takes a single normal parameter that represents
an interval of time. We need to update the state of the projectile to account for the passage of that much time.
Here’s the code:

def update(self, time):
self.xpos = self.xpos + time * self.xvel
yvel1 = self.yvel - time * 9.8
self.ypos = self.ypos + time * (self.yvel + yvel1)/2.0
self.yvel = yvel1

Basically, this is the same code that we used in the original program updated to use and modify instance
variables. Notice the use of yvel1 as a temporary (ordinary) variable. This new value is saved by storing it
into the object in the last line of the method.

That completes our projectile class. We now have a complete object-based solution to the cannonball
problem.

cball3.py
from math import pi, sin, cos

class Projectile:

def __init__(self, angle, velocity, height):
self.xpos = 0.0
self.ypos = height
theta = pi * angle / 180.0
self.xvel = velocity * cos(theta)
self.yvel = velocity * sin(theta)

def update(self, time):
self.xpos = self.xpos + time * self.xvel
yvel1 = self.yvel - 9.8 * time
self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0
self.yvel = yvel1

def getY(self):
return self.ypos

def getX(self):
return self.xpos

def getInputs():

164 CHAPTER 10. DEFINING CLASSES

a = input("Enter the launch angle (in degrees): ")
v = input("Enter the initial velocity (in meters/sec): ")
h = input("Enter the initial height (in meters): ")
t = input("Enter the time interval between position calculations: ")
return a,v,h,t

def main():
angle, vel, h0, time = getInputs()
cball = Projectile(angle, vel, h0)
while cball.getY() >= 0:

cball.update(time)
print "\nDistance traveled: %0.1f meters." % (cball.getX())

10.4 Objects and Encapsulation

10.4.1 Encapsulating Useful Abstractions

Hopefully, you can see how defining new classes can be a good way to modularize a program. Once we
identify some objects that might be useful in solving a particular problem, we can write an algorithm as if we
had those objects available and push the implementation details into a suitable class definition. This gives us
the same kind of separation of concerns that we had using functions in top-down design. The main program
only has to worry about what objects can do, not about how they are implemented.

Computer scientists call this separation of concerns encapsulation. The implementation details of an
object are encapsulated in the class defintion, which insulates the rest of the program from having to deal
with them. This is another application of abstraction (ignoring irrelevant details), which is the essence of
good design.

I should mention that encapsulation is only a programming convention in Python. It is not enforced by the
language, per se. In our Projectile class we included two short methods, getX and getY, that simply
returned the values of instance variables xpos and ypos, respectively. Strictly speaking, these methods are
not absolutely necessary. In Python, you can access the instance variables of any object with the regular dot
notation. For example, we could test the constructor for the Projectile class interactively by creating an
object and then directly inspecting the values of the instance variables.

>>> c = Projectile(60, 50, 20)
>>> c.xpos
0.0
>>> c.ypos
20
>>> c.xvel
25.0
>>> c.yvel
43.301270

Accessing the instance variables of an object like this is very handy for testing purposes, but it is generally
considered poor practice to this in programs. One of the main reasons for using objects is to insulate programs
that use those objects from the internal details of how they are implemented. References to instance variables
should remain inside the class definition with the rest of the implementation details. From outside the class,
our interaction with an object should take place using the interface provided by its methods. As you design
classes of your own, you should strive to provide a complete set of methods to make your class useful. That
way other programs do not need to know about or manipulate internal details like instance variables.

10.4.2 Putting Classes in Modules

Often a well-defined class or set of classes provide(s) useful abstractions that can be leveraged in many
different programs. We might want to turn our projectile class into its own module file so that it can be used

10.4. OBJECTS AND ENCAPSULATION 165

in other programs. In doing so, it would be a good idea to add documentation that describes how the class
can be used so that programmers who want to use the module don’t have to study the code to figure out (or
remember) what the class and its methods do.

You are already familiar with one way of documenting programs, namely comments. It’s always a good
idea to provide comments explaining the contents of a module and its uses. In fact, comments of this sort
are so important that Python incorporates a special kind of commenting convention called a docstring. You
can insert a plain string literal as the first line of a module, class or function to document that component.
The advantage of docstrings is that, while ordinary comments are simply ignored by Python, docstrings are
actually carried along during execution in a special attribute called doc . These strings can be examined
dynamically.

Most of the Python library modules have extensive docstrings that you can use to get help on using the
module or its contents. For example, if you can’t remember how to use the randrange function, you can
print its docstring like this:

>>> import random
>>> print random.randrange.__doc__
Choose a random item from range(start, stop[, step]).

Here is a version of our Projectile class as a module file with docstrings included:

projectile.py

"""projectile.py
Provides a simple class for modeling the flight of projectiles."""

from math import pi, sin, cos

class Projectile:

"""Simulates the flight of simple projectiles near the earth’s
surface, ignoring wind resistance. Tracking is done in two
dimensions, height (y) and distance (x)."""

def __init__(self, angle, velocity, height):
"""Create a projectile with given launch angle, initial
velocity and height."""
self.xpos = 0.0
self.ypos = height
theta = pi * angle / 180.0
self.xvel = velocity * cos(theta)
self.yvel = velocity * sin(theta)

def update(self, time):
"""Update the state of this projectile to move it time seconds
farther into its flight"""
self.xpos = self.xpos + time * self.xvel
yvel1 = self.yvel - 9.8 * time
self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0
self.yvel = yvel1

def getY(self):
"Returns the y position (height) of this projectile."
return self.ypos

def getX(self):

166 CHAPTER 10. DEFINING CLASSES

"Returns the x position (distance) of this projectile."
return self.xpos

You might notice that many of the docstrings in this code are enclosed in triple quotes (”””). This is a
third way that Python allows string literals to be delimited. Triple quoting allows us to directly type multi-line
strings. Here is an example of how the docstrings appear when they are printed.

>>> print projectile.Projectile.__doc__
Simulates the flight of simple projectiles near the earth’s

surface, ignoring wind resistance. Tracking is done in two
dimensions, height (y) and distance (x).

Our main program could now simply import this module in order to solve the original problem.

cball4.py
from projectile import Projectile

def getInputs():
a = input("Enter the launch angle (in degrees): ")
v = input("Enter the initial velocity (in meters/sec): ")
h = input("Enter the initial height (in meters): ")
t = input("Enter the time interval between position calculations: ")
return a,v,h,t

def main():
angle, vel, h0, time = getInputs()
cball = Projectile(angle, vel, h0)
while cball.getY() >= 0:

cball.update(time)
print "\nDistance traveled: %0.1f meters." % (cball.getX())

In this version, details of projectile motion are now hidden in the projectile module file.

10.5 Widget Objects

One very common use of objects is in the design of graphical user interfaces (GUIs). Back in Chapter 5, we
talked about GUIs being composed of visual interface objects called widgets. The Entry object defined in
our graphics library is one example of a widget. Now that we know how to define new classes, we can
create our own custom widgets.

10.5.1 Example Program: Dice Roller

Let’s try our hand at building a couple useful widgets. As an example application, consider a program that
rolls a pair of standard (six-sided) dice. The program will display the dice graphically and provide two
buttons, one for rolling the dice and one for quitting the program. Figure 10.3 shows a snapshot of the user
interface.

You can see that this program has two kinds of widgets: buttons and dice. We can start by developing
suitable classes. The two buttons will be instances of a Button class, and the class that provides a graphical
view of the value of a die will be DieView.

10.5.2 Building Buttons

Buttons, of course, are standard elements of virtually every GUI these days. Modern buttons are very so-
phisticated, usually having a 3-dimensional look and feel. Our simple graphics package does not have the
machinery to produce buttons that appear to depress as they are clicked. The best we can do is find out where

10.5. WIDGET OBJECTS 167

Figure 10.3: Snapshot of dice roller in action.

the mouse was clicked after the click has already completed. Nevertheless, we can make a useful, if less
pretty, button class.

Our buttons will be rectangular regions in a graphics window where user clicks can influence the behavior
of the running application. We will need to create buttons and determine when they have been clicked. In
addition, it is also nice to be able to activate and deactivate individual buttons. That way, our applications can
signal which options are available to the user at any given moment. Typically, an inactive button is grayed-out
to show that it is not available.

Summarizing this description, our buttons will support the following methods:

constructor Create a button in a window. We will have to specify the window in which the button will be
displayed, the location/size of the button, and the label that will be on the button.

activate Set the state of the button to active.

deactivate Set the state of the button to inactive.

clicked Indicate if the button was clicked. If the button is active, this method will determine if the point
clicked is inside the button region. The point will have to be sent as a parameter to the method.

getLabel Returns the label string of the button. This is provided so that we can identify a particular button.

In order to support these operations, our buttons will need a number of instance variables. For example,
the button itself will be drawn as a rectangle with some text centered in it. Invoking the activate and
deactivatemethods will change the appearance of the button. Saving the Rectangle and Text objects
as instance variables will allow us to change the width of the outline and the color of the label. We might
start by implementing the various methods to see what other instance variables might be needed. Once we
have identified the relevant variables, we can write a constructor that initializes these values.

Let’s start with the activate method. We can signal that the button is active by making the outline
thicker and making the label text black. Here is the code (remember the self parameter refers to the button
object):

def activate(self):
"Sets this button to ’active’."
self.label.setFill(’black’)
self.rect.setWidth(2)
self.active = 1

168 CHAPTER 10. DEFINING CLASSES

As I mentioned above, in order for this code to work, our constructor will have to initialize self.label
as an approprate Text object and self.rect as a Rectangle object. In addition, the self.active
instance variable stores a Boolean value (1 for true, 0 for false) to remember whether or not the button is
currently active.

Our deactivate method will do the inverse of activate. It looks like this:

def deactivate(self):
"Sets this button to ’inactive’."
self.label.setFill(’darkgrey’)
self.rect.setWidth(1)
self.active = 0

Of course, the main point of a button is being able to determine if it has been clicked. Let’s try to write
the clicked method. As you know, the graphics package provides a getMouse method that returns
the point where the mouse was clicked. If an application needs to get a button click, it will first have to call
getMouse and then see which active button (if any) the point is inside of. We could imagine the button
processing code looking something like the following:

pt = win.getMouse()
if button1.clicked(pt):

Do button1 stuff
elif button2.clicked(pt):

Do button2 stuff
elif button2.clicked(pt)

Do button3 stuff
...

The main job of the clicked method is to determine whether a given point is inside the rectangular
button. The point is inside the rectangle if its x and y coordinates lie between the extreme x and y values
of the rectangle. This would be easiest to figure out if we just assume that the button object has instance
variables that record the min and max values of x and y.

Assuming the existence of instance variables xmin, xmax, ymin, and ymax, we can implement the
clicked method with a single Boolean expression.

def clicked(self, p):
"RETURNS true if button is active and p is inside"
return self.active and \

self.xmin <= p.getX() <= self.xmax and \
self.ymin <= p.getY() <= self.ymax

Here we have a single large Boolean expression composed by anding together three simpler expressions; all
three must be true for the function to return a true value. Recall that the backslash at the end of a line is used
to extend a statement over multiple lines.

The first of the three subexpressions simply retrieves the value of the instance variable self.active.
This ensures that only active buttons will report that they have been clicked. If self.active is false, then
clicked will return false. The second two subexpressions are compound conditions to check that the x and
y values of the point fall between the edges of the button rectangle. (Remember, x <= y <= z means the
same as the mathematical expression x � y � z (section 7.5.1)).

Now that we have the basic operations of the button ironed out, we just need a constructor to get all the
instance variables properly initialized. It’s not hard, but it is a bit tedious. Here is the complete class with a
suitable constructor.

button.py
from graphics import *

class Button:

10.5. WIDGET OBJECTS 169

"""A button is a labeled rectangle in a window.
It is activated or deactivated with the activate()
and deactivate() methods. The clicked(p) method
returns true if the button is active and p is inside it."""

def __init__(self, win, center, width, height, label):
""" Creates a rectangular button, eg:
qb = Button(myWin, Point(30,25), 20, 10, ’Quit’) """

w,h = width/2.0, height/2.0
x,y = center.getX(), center.getY()
self.xmax, self.xmin = x+w, x-w
self.ymax, self.ymin = y+h, y-h
p1 = Point(self.xmin, self.ymin)
p2 = Point(self.xmax, self.ymax)
self.rect = Rectangle(p1,p2)
self.rect.setFill(’lightgray’)
self.rect.draw(win)
self.label = Text(center, label)
self.label.draw(win)
self.deactivate()

def clicked(self, p):
"RETURNS true if button active and p is inside"
return self.active and \

self.xmin <= p.getX() <= self.xmax and \
self.ymin <= p.getY() <= self.ymax

def getLabel(self):
"RETURNS the label string of this button."
return self.label.getText()

def activate(self):
"Sets this button to ’active’."
self.label.setFill(’black’)
self.rect.setWidth(2)
self.active = 1

def deactivate(self):
"Sets this button to ’inactive’."
self.label.setFill(’darkgrey’)
self.rect.setWidth(1)
self.active = 0

You should study the constructor in this class to make sure you understand all of the instance variables
and how they are initialized. A button is positioned by providing a center point, width and height. Other
instance variables are calculated from these parameters.

10.5.3 Building Dice

Now we’ll turn our attention to the DieView class. The purpose of this class is to display the value of a die
in a graphical fashion. The face of the die will be a square (via Rectangle) and the pips will be circles.

Our DieView will have the following interface:

constructor Create a die in a window. We will have to specify the window, the center point of the die, and

170 CHAPTER 10. DEFINING CLASSES

the size of the die as parameters.

setValue Change the view to show a given value. The value to display will be passed as a parameter.

Obviously, the heart of DieView is turning various pips “on” and “off” to indicate the current value of
the die. One simple approach is to pre-place circles in all the possible locations where a pip might be and
then turn them on or off by changing their colors.

Using the standard position of pips on a die, we will need seven circles: three down the left edge, three
down the right edge, and one in the center. The constructor will create the background square and the seven
circles. The setValue method will set the colors of the circles based on the value of the die.

Without further ado, here is the code for our DieView class. The comments will help you to follow how
it works.

class DieView:
""" DieView is a widget that displays a graphical representation
of a standard six-sided die."""

def __init__(self, win, center, size):
"""Create a view of a die, e.g.:

d1 = GDie(myWin, Point(40,50), 20)
creates a die centered at (40,50) having sides
of length 20."""

first define some standard values
self.win = win # save this for drawing pips later
self.background = "white" # color of die face
self.foreground = "black" # color of the pips
self.psize = 0.1 * size # radius of each pip
hsize = size / 2.0 # half the size of the die
offset = 0.6 * hsize # distance from center to outer pips

create a square for the face
cx, cy = center.getX(), center.getY()
p1 = Point(cx-hsize, cy-hsize)
p2 = Point(cx+hsize, cy+hsize)
rect = Rectangle(p1,p2)
rect.draw(win)
rect.setFill(self.background)

Create 7 circles for standard pip locations
self.pip1 = self.__makePip(cx-offset, cy-offset)
self.pip2 = self.__makePip(cx-offset, cy)
self.pip3 = self.__makePip(cx-offset, cy+offset)
self.pip4 = self.__makePip(cx, cy)
self.pip5 = self.__makePip(cx+offset, cy-offset)
self.pip6 = self.__makePip(cx+offset, cy)
self.pip7 = self.__makePip(cx+offset, cy+offset)

Draw an initial value
self.setValue(1)

def __makePip(self, x, y):
"Internal helper method to draw a pip at (x,y)"
pip = Circle(Point(x,y), self.psize)
pip.setFill(self.background)

10.5. WIDGET OBJECTS 171

pip.setOutline(self.background)
pip.draw(self.win)
return pip

def setValue(self, value):
"Set this die to display value."
turn all pips off
self.pip1.setFill(self.background)
self.pip2.setFill(self.background)
self.pip3.setFill(self.background)
self.pip4.setFill(self.background)
self.pip5.setFill(self.background)
self.pip6.setFill(self.background)
self.pip7.setFill(self.background)

turn correct pips on
if value == 1:

self.pip4.setFill(self.foreground)
elif value == 2:

self.pip1.setFill(self.foreground)
self.pip7.setFill(self.foreground)

elif value == 3:
self.pip1.setFill(self.foreground)
self.pip7.setFill(self.foreground)
self.pip4.setFill(self.foreground)

elif value == 4:
self.pip1.setFill(self.foreground)
self.pip3.setFill(self.foreground)
self.pip5.setFill(self.foreground)
self.pip7.setFill(self.foreground)

elif value == 5:
self.pip1.setFill(self.foreground)
self.pip3.setFill(self.foreground)
self.pip4.setFill(self.foreground)
self.pip5.setFill(self.foreground)
self.pip7.setFill(self.foreground)

else:
self.pip1.setFill(self.foreground)
self.pip2.setFill(self.foreground)
self.pip3.setFill(self.foreground)
self.pip5.setFill(self.foreground)
self.pip6.setFill(self.foreground)
self.pip7.setFill(self.foreground)

There are a couple of things worth noticing in this code. First, in the constructor, I have defined a set of
values that determine various aspects of the die such as its color and the size of the pips. Calculating these
values in the constructor and then using them in other places allows us to easily tweak the appearance of the
die without having to search through the code to find all the places where those values are used. I actually
figured out the specific calculations (such as the pip size being one-tenth of the die size) through a process of
trial and error.

Another important thing to notice is that I have added an extra method makePip that was not part
of the original specification. This method is just a helper function that executes the four lines of code nec-
essary to draw each of the seven pips. Since this is a function that is only useful within the DieView
class, it is appropriate to make it a class method. Inside the constructor, it is invoked by lines such as:
self. makePip(cx, cy). Method names beginning with a single or double underscore are used in

172 CHAPTER 10. DEFINING CLASSES

Python to indicate that a method is “private” to the class and not intended for use by outside programs.

10.5.4 The Main Program

Now we are ready to write our main program. The Button and Dieview classes are imported from their
respective modules. Here is the program that uses our new widgets.

roller.py
Graphics program to roll a pair of dice. Uses custom widgets
Button and DieView.

from random import randrange
from graphics import GraphWin, Point

from button import Button
from dieview import DieView

def main():

create the application window
win = GraphWin("Dice Roller")
win.setCoords(0, 0, 10, 10)
win.setBackground("green2")

Draw the interface widgets
die1 = DieView(win, Point(3,7), 2)
die2 = DieView(win, Point(7,7), 2)
rollButton = Button(win, Point(5,4.5), 6, 1, "Roll Dice")
rollButton.activate()
quitButton = Button(win, Point(5,1), 2, 1, "Quit")

Event loop
pt = win.getMouse()
while not quitButton.clicked(pt):

if rollButton.clicked(pt):
value1 = randrange(1,7)
die1.setValue(value1)
value2 = randrange(1,7)
die2.setValue(value2)
quitButton.activate()

pt = win.getMouse()

close up shop
win.close()

Notice that near the top of the program I have built the visual interface by creating the two DieViews
and two Buttons. To demonstrate the activation feature of buttons, the roll button is initially active, but the
quit button is left deactivated. The quit button is activated inside the event loop below when the roll button is
clicked. This approach forces the user to roll the dice at least once before quitting.

The heart of the program is the event loop. It is just a sentinel loop that gets mouse clicks and processes
them until the user successfully clicks the quit button. The if inside the loop ensures that the rolling of the
dice only happens when the roll button is clicked. Clicking a point that is not inside either button causes the
loop to iterate, but nothing is actually done.

10.6. EXERCISES 173

10.6 Exercises

1. Explain the similarities and differences between instance variables and “regular” function variables.

2. Show the output that would result from the following nonsense program.

class Bozo:

def __init__(self, value):
print "Creating a Bozo from:", value
self.value = 2 * value

def clown(self, x):
print "Clowning:", x
print x * self.value
return x + self.value

def main():
print "Clowning around now."
c1 = Bozo(3)
c2 = Bozo(4)
print c1.clown(3)
print c2.clown(c1.clown(2))

main()

3. Use the Button class discussed in this chapter to build a GUI for one (or more) of your projects from
previous chapters.

4. Write a modified Button class that creates circular buttons.

5. Write a shell game program using several different shapes of buttons. The program should draw at
least three shapes on the screen and “pick” one of them at random. The user tries to guess which of the
shapes is the special one (by clicking in it). The user wins if he/she picks the right one.

6. Write a set of classes corresponding to the geometric solids: cube, rectangular prism (brick), sphere
and cylinder. Each class should have a constructor that allows for the creation of different sized objects
(e.g., a cube is specified by the length of its side) and methods that return the surface area and volume
of the solid.

7. Extend the previous problem to include a method, inside, that determines whether a particular point
lies within the solid. The method should accept three numbers representing the x, y and z coordinates
of a point and return true if the point is inside the object and false otherwise. You may assume that the
objects are always centered at

�
0 � 0 � 0 � .

8. Here is a simple class that draws a (grim) face in a graphics window.

face.py
from graphics import *

class Face:

def __init__(self, window, center, size):
eyeSize = 0.15 * size
eyeOff = size / 3.0
mouthSize = 0.8 * size

174 CHAPTER 10. DEFINING CLASSES

mouthOff = size / 2.0
self.head = Circle(center, size)
self.head.draw(window)
self.leftEye = Circle(center, eyeSize)
self.leftEye.move(-eyeOff, -eyeOff)
self.rightEye = Circle(center, eyeSize)
self.rightEye.move(eyeOff, -eyeOff)
self.leftEye.draw(window)
self.rightEye.draw(window)
p1 = center.clone()
p1.move(-mouthSize/2, mouthOff)
p2 = center.clone()
p2.move(mouthSize/2, mouthOff)
self.mouth = Line(p1,p2)
self.mouth.draw(window)

(a) Use this class to write a program that draws three faces in a window.

(b) Add and test a move method so that faces can be moved like other graphics objects.

(c) Add and test a flinchmethod that causes a face’s eyes to close. Also add and test an unflinch
to open them back up again.

(d) Write a complete program that draws a single face in a window and then animates it “bouncing
around.” Start the face at a random location in the window and use a loop that moves it a small
increment in the x and y directions. When the face hits the edge of the window, it should flinch
and bounce off. You can do the bounce by simply reversing the sign of the x increment or the y
increment depending on whether the face hit a side- or top-/bottom-edge respectively. Write the
animation program to run for a certain (fixed) number of steps.

Note: You will need to flush the graphics window at the bottom of the loop to achieve the effect
of animation.

9. Create a Tracker class that displays a circle in a graphics window to show the current location of an
object. Here is a quick specification of the class:

class Tracker:

def __init__(self, window, objToTrack):
window is a graphWin and objToTrack is an object whose
position is to be shown in the window. objToTrack must be
an object that has getX() and getY() methods that report its
current position.
Creates a Tracker object and draws a circle in window at the
current position of objToTrack.

def update():
Moves the circle in the window to the current position of the
object being tracked.

Use your new Tracker class in conjunction with the Projectile class to write a program that
graphically depicts the flight of a cannonball.

10. Add a Target class to the cannonball program from the previous problem. A target should be a
rectangle placed at a random position in the window. Allow the user to keep firing until they hit the
target.

10.6. EXERCISES 175

11. Redo the regression problem from Chapter 8 using a Regression class. Your new class will keep
track of the various quantities that are needed to compute a line of regresion (the running sums of x, y,
x2 and xy)The regression class should have the following methods.

init Creates a new regression object to which points can be added.

addPoint Adds a point to the regression object.

predict Accepts a value of x as a parameter, and returns the value of the corresponding y on the line
of best fit.

Note: Your class might also use some internal helper methods to do such things as compute the slope
of the regression line.

12. Implement a card class that represents a playing card. Use your class to write a program that “deals”
a random hand of cards and displays them in a graphics window. You should be able to find a freely
available set of card images to display your cards by searching on the Internet.

176 CHAPTER 10. DEFINING CLASSES

Chapter 11

Data Collections

As you saw in the last chapter, classes are one mechanism for structuring the data in our programs. Classes
alone, however, are not enough to satisfy all of our data-handling needs.

If you think about the kinds of data that most real-world programs manipulate, you will quickly realize
that many programs deal with large collections of similar information. A few examples of the collections that
you might find in a modern program include

� Words in a document.

� Students in a course.

� Data from an experiment.

� Customers of a business.

� Graphics objects drawn on the screen.

� Cards in a deck.

In this chapter, you will learn techniques for writing programs that manipulate collections like these.

11.1 Example Problem: Simple Statistics

Back in Chapter 8, we wrote a simple but useful program to compute the mean (average) of a set of numbers
entered by the user. Just to refresh your memory (as if you could forget it), here is the program again:

average4.py
def main():

sum = 0.0
count = 0
xStr = raw_input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = eval(xStr)
sum = sum + x
count = count + 1
xStr = raw_input("Enter a number (<Enter> to quit) >> ")

print "\nThe average of the numbers is", sum / count

main()

This program allows the user to enter a sequence of numbers, but the program itself does not keep track
of what numbers were entered. Instead, it just keeps a summary of the numbers in the form of a running sum.
That’s all that’s needed to compute the mean.

177

178 CHAPTER 11. DATA COLLECTIONS

Suppose we want to extend this program so that it computes not only the mean, but also the median and
standard deviation of the data. You are probably familiar with the concept of a median. This is the value that
splits the data set into equal-sized parts. For the data 2, 4, 6, 9, 13, the median value is 6, since there are two
values greater than 6 and two that are smaller. To calculate the median, we need to store all the numbers and
put them in order so that we can identify the middle value.

The standard deviation is a measure of how spread out the data is relative to the mean. If the data is
tightly clustered around the mean, then the standard deviation is small. When the data is more spread out, the
standard deviation is larger. The standard deviation provides a yardstick for determining how exceptional a
value is. For example, some teachers define an “A” as any score that is at least two standard deviations above
the mean.

The standard deviation, s, is defined as

s �

�
∑

�
x̄ � xi � 2

n � 1

In this formula x̄ is the mean, xi represents the ith data value and n is the number of data values. The formula
looks complicated, but it is not hard to compute. The expression

�
x̄ � xi � 2 is the square of the “deviation” of

an individual item from the mean. The numerator of the fraction is the sum of the deviations (squared) across
all the data values.

Let’s take a simple example. If we again use the values: 2, 4, 6, 9, and 13, the mean of this data (x̄) is 6.8.
So the numerator of the fraction is computed as

�
6 � 8 � 2 � 2 �

�
6 � 8 � 4 � 2 �

�
6 � 8 � 6 � 2 �

�
6 � 8 � 9 � 2 �

�
6 � 8 � 13 � 2 � 149 � 6

Finishing out the calculation gives us

s �

�
149 � 6
5 � 1

�
�

37 � 4 � 6 � 11

The standard deviation is about 6.1. You can see how the first step of this calculation uses both the mean
(which can’t be computed until all of the numbers have been entered) and each individual value as well.
Again, this requires some method to remember all of the individual values that were entered.

11.2 Applying Lists

In order to complete our enhanced statistics program, we need a way to store and manipulate an entire
collection of numbers. We can’t just use a bunch of independent variables, because we don’t know how many
numbers there will be.

What we need is some way of combining an entire collection of values into one object. Actually, we’ve
already done something like this, but we haven’t discussed the details. Take a look at these interactive
examples.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> string.split("This is an ex-parrot!")
[’This’, ’is’, ’an’, ’ex-parrot!’]

Both of these familiar functions return a collection of values denoted by the enclosing square brackets. As
you know, these collections are called lists.

11.2.1 Lists are Sequences

Lists are ordered sequences of items. The ideas and notations that we use for manipulating lists are borrowed
from mathematics. Mathematicians sometimes give an entire sequence of items a single name. For instance,
a sequence of n numbers might just be called S:

S � s0 � s1 � s2 � s3 � � � � � sn � 1

11.2. APPLYING LISTS 179

When they want to refer to specific values in the sequence, these values are denoted by subscripts. In this
example, the first item in the sequence is denoted with the subscript 0, s0.

By using numbers as subscripts, mathematicians are able to succinctly summarize computations over
items in the sequence using subscript variables. For example, the sum of the sequence is written using
standard summation notation as

n � 1

∑
i � 0

si

.
A similar idea can be applied to computer programs. We can use a single variable to represent an entire

sequence, and the individual items in the sequence can be accessed through subscripting. Well, almost; We
don’t have a way of typing subscripts, but we can use indexing instead.

Suppose that our sequence is stored in a variable called s. We could write a loop to calculate the sum of
the items in the sequence like this:

sum = 0
for i in range(n):

sum = sum + s[i]

To make this work, s must be the right kind of object. In Python, we can use a list; other languages have
arrays, which are similar. A list or array is a sequence of items where the entire sequence is referred to by a
single name (in this case, s) and individual items can be selected by indexing (e.g., s[i]).

11.2.2 Lists vs. Strings

You may notice the similarity between lists and strings. In Python strings and lists are both sequences that can
be indexed. In fact, all of the built-in string operations that we discussed in Chapter 4 are sequence operations
and can also be applied to lists. To jog your memory, here’s a summary.

Operator Meaning

� seq � + � seq � Concatenation
� seq � * � int-expr � Repetition

� seq � [] Indexing
len(� seq �) Length

� seq � [:] Slicing
for � var � in � seq � : Iteration

The last line shows that a for loop can be used to iterate through the items in a sequence. The summation
example above can be coded more simply like this:

sum = 0
for num in s:

sum = sum + s

Lists differ from strings in a couple important ways. First, the items in a list can be any data type,
including instances of programmer-defined classes. Strings, obviously, are always sequences of characters.
Second, lists are mutable. That means that the contents of a list can be modified. Strings cannot be changed
“in place.” Here is an example interaction that illustrates the difference:

>>> myList = [34, 26, 15, 10]
>>> myList[2]
15
>>> myList[2] = 0
>>> myList
[34, 26, 0, 10]
>>> myString = "Hello World"
>>> myString[2]

180 CHAPTER 11. DATA COLLECTIONS

’l’
>>> myString[2] = ’z’
Traceback (innermost last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment

The first line creates a list of four numbers. Indexing position 2 returns the value 15 (as usual, indexes
start at 0). The next command assigns the value 0 to the item in position 2. After the assignment, evaluating
the list shows that the new value has replaced the old. Attempting a similar operation on a string produces an
error. Strings are not mutable; lists are.

11.2.3 List Operations

Arrays in other programming languages are generally fixed size. When you create an array, you have to
specify how many items it will hold. If you don’t know how many items you will have, then you have to
allocate a large array, just in case, and keep track of how many “slots” you actually fill. Arrays are also
usually homogeneous. That means they are restricted to holding objects of a single data type. You can have
an array of ints or an array of strings but can not mix strings and ints in a single array.

In contrast, Python lists are dynamic. They can grow and shrink on demand. They are also heterogeneous.
You can mix arbitrary data types in a single list. In a nutshell, Python lists are mutable sequences of arbitrary
objects.

As you know, lists can be created by listing items inside square brackets.

odds = [1, 3, 5, 7, 9]
food = ["spam", "eggs", "back bacon"]
silly = [1, "spam", 4, "U"]
empty = []

In the last example, empty is a list containing no items at all—an empty list.
A list of identical items can be created using the repetition operator. This example creates a list containing

50 zeroes:

zeroes = [0] * 50

Typically, lists are built up one piece at a time using the append method. Here is a fragment of code that
fills a list with positive numbers typed by the user:

nums = []
x = input(’Enter a number: ’)
while x >= 0:

nums.append(x)
x = input("Enter a number: ")

In essence, nums is being used as an accumulator. The accumulator starts out empty, and each time through
the loop a new value is tacked on.

The appendmethod is just one example of a number of useful list-specific methods. The following table
briefly summarizes of what you can do to a list:

Method Meaning

�
�������

� .append(x) Add element x to end of list.
�
�������

� .sort() Sort the list. A comparison function may be passed as parameter.
�
�������

� .reverse() Reverses the list.
�
�������

� .index(x) Returns index of first occurrence of x.
�
�������

� .insert(i,x) Insert x into list at index i. (Same as list[i:i] = [x])
�
���	���

� .count(x) Returns the number of occurrences of x in list.
�
�������

� .remove(x) Deletes the first occurrence of x in list.
�
�������

� .pop(i) Deletes the ith element of the list and returns its value.
x in � list � Checks to see if x is in the list (returns a Boolean).

11.3. STATISTICS WITH LISTS 181

We have seen how lists can grow by appending new items. Lists can also shrink when items are deleted.
Individual items or entire slices can be removed from a list using the del operator.

>>> myList
[34, 26, 0, 10]
>>> del myList[1]
>>> myList
[34, 0, 10]
>>> del myList[1:3]
>>> myList
[34]

As you can see, Python lists provide a very flexible mechanism for handling indefinitely large sequences
of data. Using lists is easy if you keep these basic principles in mind:

� A list is a sequence of items stored as a single object.

� Items in a list can be accessed by indexing, and sublists can be accessed by slicing.

� Lists are mutable; individual items or entire slices can be replaced through assignment statements.

� Lists will grow and shrink as needed.

11.3 Statistics with Lists

Now that you know more about lists, we are ready to solve our little statistics problem. Recall that we are
trying to develop a program that can compute the mean, median and standard deviation of a sequence of
numbers entered by the user. One obvious way to approach this problem is to store the numbers in a list. We
can write a series of functions—mean, stdDev and median—that take a list of numbers and calculate the
corresponding statistics.

Let’s start by using lists to rewrite our original program that only computes the mean. First, we need a
function that gets the numbers from the user. Let’s call it getNumbers. This function will implement the
basic sentinel loop from our original program to input a sequence of numbers. We will use an initially empty
list as an accumulator to collect the numbers. The list will then be returned from the function.

Here’s the code for getNumbers:

def getNumbers():
nums = [] # start with an empty list

sentinel loop to get numbers
xStr = raw_input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = eval(xStr)
nums.append(x) # add this value to the list
xStr = raw_input("Enter a number (<Enter> to quit) >> ")

return nums

Using this function, we can get a list of numbers from the user with a single line of code.

data = getNumbers()

Next, let’s implement a function that computes the mean of the numbers in a list. This function takes a
list of numbers as a parameter and returns the mean. We will use a loop to go through the list and compute
the sum.

def mean(nums):
sum = 0.0

182 CHAPTER 11. DATA COLLECTIONS

for num in nums:
sum = sum + num

return sum / len(nums)

Notice how the average is computed and returned in the last line of this function. The len operation returns
the length of a list; we don’t need a separate loop accumulator to determine how many numbers there are.

With these two functions, our original program to average a series of numbers can now be done in two
simple lines:

def main():
data = getNumbers()
print ’The mean is’, mean(data)

Next, let’s tackle the standard deviation function, stdDev. In order use the standard deviation formula
discussed above, we first need to compute the mean. We have a design choice here. The value of the mean
can either be calculated inside of stdDev or passed to the function as a parameter. Which way should we
do it?

On the one hand, calculating the mean inside of stdDev seems cleaner, as it makes the interface to the
function simpler. To get the standard deviation of a set of numbers, we just call stdDev and pass it the
list of numbers. This is exactly analogous to how mean (and median below) works. On the other hand,
programs that need to compute the standard deviation will almost certainly need to compute the mean as well.
Computing it again inside of stdDev results in the calculations being done twice. If our data set is large,
this seems inefficient.

Since our program is going to output both the mean and the standard deviation, let’s have the main
program compute the mean and pass it as a parameter to stdDev. Other options are explored in the exercises
at the end of the chapter.

Here is the code to compute the standard deviation using the mean (xbar) as a parameter:

def stdDev(nums, xbar):
sumDevSq = 0.0
for num in nums:

dev = xbar - num
sumDevSq = sumDevSq + dev * dev

return sqrt(sumDevSq/(len(nums)-1))

Notice how the summation from the standard deviation formula is computed using a loop with an accumulator.
The variable sumDevSq stores the running sum of the squares of the deviations. Once this sum has been
computed, the last line of the function calculates the rest of the formula.

Finally, we come to the median function. This one is a little bit trickier, as we do not have a formula to
calculate the median. We need an algorithm that picks out the middle value. The first step is to arrange the
numbers in increasing order. Whatever value ends up in the middle of the pack is, by definition, the median.
There is just one small complication. If we have an even number of values, there is no exact middle number.
In that case, the median is determined by averaging the two middle values. So the median of 3, 5, 6 and 9 is�
5 � 6 � �

2 � 5 � 5.
In pseudocode our median algorithm looks like this.

sort the numbers into ascending order
if the size of data is odd:

median = the middle value
else:

median = the average of the two middle values
return median

This algorithm translates almost directly into Python code. We can take advantage of the sort method to
put the list in order. To test whether the size is even, we need to see if it is divisible by two. This is a perfect
application of the remainder operation. The size is even if size % 2 == 0, that is, dividing by 2 leaves a
remainder of 0.

With these insights, we are ready to write the code.

11.3. STATISTICS WITH LISTS 183

def median(nums):
nums.sort()
size = len(nums)
midPos = size / 2
if size % 2 == 0:

median = (nums[midPos] + nums[midPos-1]) / 2.0
else:

median = nums[midPos]
return median

You should study this code carefully to be sure you understand how it selects the correct median from the
sorted list.

The middle position of the list is calculated using integer division as size / 2. If size is 3, then
midPos is 1 (2 goes into 3 just one time). This is the correct middle position, since the three values in the
list will have the indexes 0, 1, 2. Now suppose size is 4. In this case, midPos will be 2, and the four
values will be in locations 0, 1, 2, 3. The correct median is found by averaging the values at midPos (2) and
midPos-1 (1).

Now that we have all the basic functions, finishing out the program is a cinch.

def main():
print ’This program computes mean, median and standard deviation.’

data = getNumbers()
xbar = mean(data)
std = stdDev(data, xbar)
med = median(data)

print ’\nThe mean is’, xbar
print ’The standard deviation is’, std
print ’The median is’, med

Many computational tasks from assigning grades to monitoring flight systems on the space shuttle require
some sort of statisitical analysis. By using the if name == ’ main ’ technique, we can make our
code useful as a stand-alone program and as a general statistical library module.

Here’s the complete program:

stats.py
from math import sqrt

def getNumbers():
nums = [] # start with an empty list

sentinel loop to get numbers
xStr = raw_input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = eval(xStr)
nums.append(x) # add this value to the list
xStr = raw_input("Enter a number (<Enter> to quit) >> ")

return nums

def mean(nums):
sum = 0.0
for num in nums:

sum = sum + num
return sum / len(nums)

184 CHAPTER 11. DATA COLLECTIONS

def stdDev(nums, xbar):
sumDevSq = 0.0
for num in nums:

dev = num - xbar
sumDevSq = sumDevSq + dev * dev

return sqrt(sumDevSq/(len(nums)-1))

def median(nums):
nums.sort()
size = len(nums)
midPos = size / 2
if size % 2 == 0:

median = (nums[midPos] + nums[midPos-1]) / 2.0
else:

median = nums[midPos]
return median

def main():
print ’This program computes mean, median and standard deviation.’

data = getNumbers()
xbar = mean(data)
std = stdDev(data, xbar)
med = median(data)

print ’\nThe mean is’, xbar
print ’The standard deviation is’, std
print ’The median is’, med

if __name__ == ’__main__’: main()

11.4 Combining Lists and Classes

In the last chapter, we saw how classes could be used to structure data by combining several instance variables
together into a single object. Lists and classes used together are powerful tools for structuring the data in our
programs.

Remember the DieView class from last chapter? In order to display the six possible values of a die,
each DieView object keeps track of seven circles representing the position of pips on the face of a die. In
the previous version, we saved these circles using instance variables, pip1, pip2, pip3, etc.

Let’s consider how the code looks using a collection of circle objects stored as a list. The basic idea is to
replace our seven instance variables with a single list called pips. Our first problem is to to create a suitable
list. This will be done in the constructor for the DieView class.

In our previous version, the pips were created with this sequence of statements inside of init :

self.pip1 = self.__makePip(cx-offset, cy-offset)
self.pip2 = self.__makePip(cx-offset, cy)
self.pip3 = self.__makePip(cx-offset, cy+offset)
self.pip4 = self.__makePip(cx, cy)
self.pip5 = self.__makePip(cx+offset, cy-offset)
self.pip6 = self.__makePip(cx+offset, cy)
self.pip7 = self.__makePip(cx+offset, cy+offset)

Recall that makePip is a local method of the DieView class that creates a circle centered at the postion
given by its parameters.

11.4. COMBINING LISTS AND CLASSES 185

We want to replace these lines with code to create a list of pips. One approach would be to start with an
empty list of pips and build up the final list one pip at a time.

pips = []
pips.append(self.__makePip(cx-offset, cy-offset))
pips.append(self.__makePip(cx-offset, cy))
pips.append(self.__makePip(cx-offset, cy+offset))
pips.append(self.__makePip(cx, cy))
pips.append(self.__makePip(cx+offset, cy-offset))
pips.append(self.__makePip(cx+offset, cy))
pips.append(self.__makePip(cx+offset, cy+offset))
self.pips = pips

An even more straightforward approach is to create the list directly, enclosing the calls to makePip
inside list construction brackets, like this:

self.pips = [self.__makePip(cx-offset, cy-offset)),
self.__makePip(cx-offset, cy)),
self.__makePip(cx-offset, cy+offset)),
self.__makePip(cx, cy)),
self.__makePip(cx+offset, cy-offset)),
self.__makePip(cx+offset, cy)),
self.__makePip(cx+offset, cy+offset))

]

Notice how I have formatted this statement. Rather than making one giant line, I put one list element on each
line. Python is smart enough to know that the end of the statement has not been reached until it finds the
matching square bracket. Listing complex objects one per line like this makes it much easier to see what is
happening. Just make sure to include the commas at the end of intermediate lines to separate the items of the
list.

The advantage of a pip list is that it is much easier to perform actions on the entire set. For example, we
can blank out the die by setting all of the pips to have the same color as the background.

for pip in self.pips:
pip.setFill(self.background)

See how these two lines of code loop through the entire collection of pips to change their color? This required
seven lines of code in the previous version using separate instance variables.

Similarly, we can turn a set of pips back on by indexing the appropriate spot in the pips list. In the original
program, pips 1, 4, and 7 were turned on for the value 3.

self.pip1.setFill(self.foreground)
self.pip4.setFill(self.foreground)
self.pip7.setFill(self.foreground)

In the new version, this corresponds to pips in positions 0, 3 and 6, since the pips list is indexed starting at 0.
A parallel approach could accomplish this task with these three lines of code:

self.pips[0].setFill(self.foreground)
self.pips[3].setFill(self.foreground)
self.pips[6].setFill(self.foreground)

Doing it this way makes explicit the correspondence between the individual instance variables used in the first
version and the list elements used in the second version. By subscripting the list, we can get at the individual
pip objects, just as if they were separate variables. However, this code does not really take advantage of the
new representation.

Here is an easier way to turn on the same three pips:

186 CHAPTER 11. DATA COLLECTIONS

for i in [0,3,6]:
self.pips[i].setFill(self.foreground)

Using an index variable in a loop, we can turn all three pips on using the same line of code.
The second approach considerably shortens the code needed in the setValue method of the DieView

class. Here is the updated algorithm:

Loop through pips and turn all off
Determine the list of pip indexes to turn on
Loop through the list of indexes and turn on those pips.

We could implement this algorthim using a multi-way selection followed by a loop.

for pip in self.pips:
self.pip.setFill(self.background)

if value == 1:
on = [3]

elif value == 2:
on = [0,6]

elif value == 3:
on = [0,3,6]

elif value == 4:
on = [0,2,4,6]

elif value == 5:
on = [0,2,3,4,6]

else:
on = [0,1,2,4,5,6]

for i in on:
self.pips[i].setFill(self.foreground)

The version without lists required 36 lines of code to accomplish the same task. But we can do even better
than this.

Notice that this code still uses the if-elif structure to determine which pips should be turned on. The
correct list of indexes is determined by value; we can make this decision table-driven instead. The idea is
to use a list where each item in the list is itself a list of pip indexes. For example, the item in position 3 should
be the list [0,3,6], since these are the pips that must be turned on to show a value of 3.

Here is how a table-driven approach can be coded:

onTable = [[], [3], [2,4], [2,3,4],
[0,2,4,6], [0,2,3,4,6], [0,1,2,4,5,6]]

for pip in self.pips:
self.pip.setFill(self.background)

on = onTable[value]
for i in on:

self.pips[i].setFill(self.foreground)

I have called the table of pip indexes onTable. Notice that I padded the table by placing an empty list in
the first position. If value is 0, the DieView will be blank. Now we have reduced our 36 lines of code to
seven. In addition, this version is much easier to modify; if you want to change which pips are displayed for
various values, you simply modify the entries in onTable.

There is one last issue to address. The onTable will remain unchanged throughout the life of any
particular DieView. Rather than (re)creating this table each time a new value is displayed, it would be
better to create the table in the constructor and save it in an instance variable. Putting the definition of
onTable into init yields this nicely completed class:

11.4. COMBINING LISTS AND CLASSES 187

class DieView:
""" DieView is a widget that displays a graphical representation
of a standard six-sided die."""

def __init__(self, win, center, size):
"""Create a view of a die, e.g.:

d1 = GDie(myWin, Point(40,50), 20)
creates a die centered at (40,50) having sides
of length 20."""

first define some standard values
self.win = win
self.background = "white" # color of die face
self.foreground = "black" # color of the pips
self.psize = 0.1 * size # radius of each pip
hsize = size / 2.0 # half of size
offset = 0.6 * hsize # distance from center to outer pips

create a square for the face
cx, cy = center.getX(), center.getY()
p1 = Point(cx-hsize, cy-hsize)
p2 = Point(cx+hsize, cy+hsize)
rect = Rectangle(p1,p2)
rect.draw(win)
rect.setFill(self.background)

Create 7 circles for standard pip locations
self.pips = [self.__makePip(cx-offset, cy-offset),

self.__makePip(cx-offset, cy),
self.__makePip(cx-offset, cy+offset),
self.__makePip(cx, cy),
self.__makePip(cx+offset, cy-offset),
self.__makePip(cx+offset, cy),
self.__makePip(cx+offset, cy+offset)]

Create a table for which pips are on for each value
self.onTable = [[], [3], [2,4], [2,3,4],

[0,2,4,6], [0,2,3,4,6], [0,1,2,4,5,6]]

self.setValue(1)

def __makePip(self, x, y):
"""Internal helper method to draw a pip at (x,y)"""
pip = Circle(Point(x,y), self.psize)
pip.setFill(self.background)
pip.setOutline(self.background)
pip.draw(self.win)
return pip

def setValue(self, value):
""" Set this die to display value."""
Turn all the pips off
for pip in self.pips:

pip.setFill(self.background)

188 CHAPTER 11. DATA COLLECTIONS

Turn the appropriate pips back on
for i in self.onTable[value]:

self.pips[i].setFill(self.foreground)

11.5 Case Study: Python Calculator

The reworked DieView class shows how lists can be used effectively as instance variables of objects. Inter-
estingly, our pips list and onTable list contain circles and lists, respectively, which are themselves objects.
Maintaining lists of objects can be a powerful technique for organizing a program.

We can go one step further and view a program itself as a collection of data structures (collections and
objects) and a set of algorithms that operate on those data structures. Now, if a program contains data and
operations, then one natural way to organize the program it to treat the entire application itself as an object.

11.5.1 A Calculator as an Object

As an example, we’ll develop a program that implements a simple Python calculator. Our calculator will
have buttons for the ten digits (0–9), a decimal point “.”, four operations (“+”, “-”, “*”, “/”), and a few special
keys: “C” to clear the display, “ � -” to backspace over characters in the display, and “=” to do the calculation.

We’ll take a very simple approach to performing calculations. As buttons are clicked, the corresponding
characters will show up in the display, allowing the user to create a formula. When the “=” key is pressed,
the formula will be evaluated and the resulting value shown in the display. Figure 11.1 shows a snapshot of
the calculator in action.

Figure 11.1: Python calculator in action.

Basically, we can divide the functioning of the calculator into two parts: creating the interface and inter-
acting with the user. The user interface in this case consists of a display widget and a bunch of buttons. We
can keep track of these GUI widgets with instance variables. The user interaction can be managed by a set of
methods that manipulate the widgets.

To implement this division of labor, we will create a Calculator class that represents the calculator
in our program. The constructor for the class will create the initial interface. We will make the calculator
respond to user interaction by invoking a special run method.

11.5.2 Constructing the Interface

Let’s take a detailed look at the constructor for the Calculator class. First, we’ll need to create a graphics
window to draw the interface.

11.5. CASE STUDY: PYTHON CALCULATOR 189

def __init__(self):
create the window for the calculator
win = GraphWin("Calculator")
win.setCoords(0,0,6,7)
win.setBackground("slategray")
self.win = win

The coordinates for the window were chosen to simplify the layout of the buttons. In the last line, the window
object is tucked into an instance variable so that other methods can refer to it.

The next step is to create the buttons. We will reuse the button class from last chapter. Since there are a
lot of similar buttons, we will use a list to store them. Here is the code that creates the button list:

create list of buttons
start with all the standard sized buttons
bSpecs gives center coords and label of buttons
bSpecs = [(2,1,’0’), (3,1,’.’),

(1,2,’1’), (2,2,’2’), (3,2,’3’), (4,2,’+’), (5,2,’-’),
(1,3,’4’), (2,3,’5’), (3,3,’6’), (4,3,’*’), (5,3,’/’),
(1,4,’7’), (2,4,’8’), (3,4,’9’), (4,4,’<-’),(5,4,’C’)]

self.buttons = []
for cx,cy,label in bSpecs:

self.buttons.append(Button(self.win,Point(cx,cy),.75,.75,label))
create the larger ’=’ button
self.buttons.append(Button(self.win, Point(4.5,1), 1.75, .75, "="))
activate all buttons
for b in self.buttons:

b.activate()

Study this code carefully. A button is normally specified by providing a center point, width, height and
label. Typing out calls to the Button constructor with all this information for each button would be tedious.
Rather than creating the buttons directly, this code first creates a list of button specifications, bSpecs. This
list of specifications is then used to create the buttons.

Each specification is a tuple consisting of the x and y coordinates of the center of the button and its label.
A tuple looks like a list except that it is enclosed in round parentheses () instead of square brackets []. A
tuple is just another kind of sequence in Python. Tuples are like lists except that tuples are immutable—the
items can’t be changed. If the contents of a sequence won’t be changed after it is created, using a tuple is
more efficient than using a list.

The next step is to iterate through the specification list and create a corresponding button for each entry.
Take a look at the loop heading:

for (cx,cy,label) in bSpecs:

According to the definition of a for loop, the tuple (cx,cy,label)will be assigned each successive item
in the list bSpecs.

Put another way, conceptually, each iteration of the loop starts with an assignment.

(cx,cy,label) = <next item from bSpecs>

Of course, each item in bSpecs is also a tuple. When a tuple of variables is used on the left side of an
assignment, the corresponding components of the tuple on the right side are unpacked into the variables on
the left side. In fact, this is how Python actually implements all simultaneous assignments.

The first time through the loop, it is as if we had done this simultaneous assignment:

cx, cy, label = 2, 1, "0"

Each time through the loop, another tuple from bSpecs is unpacked into the variables in the loop heading.
The values are then used to create a Button that is appended to the list of buttons.

After all of the standard-sized buttons have been created, the larger = button is created and tacked onto
the list.

190 CHAPTER 11. DATA COLLECTIONS

self.buttons.append(Button(self.win, Point(4.5,1), 1.75, .75, "="))

I could have written a line like this for each of the previous buttons, but I think you can see the appeal of the
specification-list/loop approach for creating the seventeen similar buttons.

In contrast to the buttons, creating the calculator display is quite simple. The display will just be a
rectangle with some text centered on it. We need to save the text object as an instance variable so that its
contents can be accessed and changed during processing of button clicks. Here is the code that creates the
display:

bg = Rectangle(Point(.5,5.5), Point(5.5,6.5))
bg.setFill(’white’)
bg.draw(self.win)
text = Text(Point(3,6), "")
text.draw(self.win)
text.setFace("courier")
text.setStyle("bold")
text.setSize(16)
self.display = text

11.5.3 Processing Buttons

Now that we have an interface drawn, we need a method that actually gets the calculator running. Our
calculator will use a classic event loop that waits for a button to be clicked and then processes that button.
Let’s encapsulate this in a method called run.

def run(self):
while 1:

key = self.getKeyPress()
self.processKey(key)

Notice that this is an infinite loop. To quit the program, the user will have to “kill” the calculator window. All
that’s left is to implement the getKeyPress and processKey methods.

Getting key presses is easy; we continue getting mouse clicks until one of those mouse clicks is on a
button. To determine whether a button has been clicked, we loop through the list of buttons and check each
one. The result is a nested loop.

def getKeyPress(self):
Waits for a button to be clicked
RETURNS the label of the button the was clicked.
while 1:

loop for each mouse click
p = self.win.getMouse()
for b in self.buttons:

loop for each button
if b.clicked(p):

return b.getLabel() # method exit

You can see how having the buttons in a list is a big win here. We can use a for loop to look at each
button in turn. If the clicked point p turns out to be in one of the buttons, the label of that button is returned,
providing an exit from the otherwise infinite while loop.

The last step is to update the display of the calculator according to which button was clicked. This is
accomplished in processKey. Basically, this is a multi-way decision that checks the key label and takes
the appropriate action.

A digit or operator is simply appended to the display. If key contains the label of the button, and text
contains the current contents of the display, the appropriate line of code looks like this:

self.display.setText(text+key)

11.5. CASE STUDY: PYTHON CALCULATOR 191

The clear key blanks the display.

self.display.setText("")

The backspace strips off one character.

self.display.setText(text[:-1])

Finally, the equal key causes the expression in the display to be evaluated and the result displayed.

try:
result = eval(text)

except:
result = ’ERROR’

self.display.setText(str(result))

The try-except here is necessary to catch run-time errors caused by entries that are not legal Python
expressions. If an error occurs, the calculator will display ERROR rather than causing the program to crash.

Here is the complete program.

calc.pyw -- A four function calculator using Python arithmetic.
from graphics import *
from buttons import Button

class Calculator:
This class implements a simple calculator GUI

def __init__(self):
create the window for the calculator
win = GraphWin("calculator")
win.setCoords(0,0,6,7)
win.setBackground("slategray")
self.win = win
Now create the widgets
self.__createButtons()
self.__createDisplay()

def __createButtons(self):
create list of buttons
buttonSpec gives center, width and label of a button
buttonSpecs = [(2,1,.75,’0’), (3,1,.75,’.’), (4.5,1,2,’=’),

(1,2,.75,’1’), (1,3,.75,’4’), (1,4,.75,’7’),
(2,2,.75,’2’), (2,3,.75,’5’), (2,4,.75,’8’),
(3,2,.75,’3’), (3,3,.75,’6’), (3,4,.75,’9’),
(4,2,.75,’+’), (4,3,.75,’*’), (4,4,.75,’<-’),
(5,2,.75,’-’), (5,3,.75,’/’), (5,4,.75,’C’)
]

yinc = .75/2.0 # half of a "standard" button height
self.buttons = []
for cx,cy,bwidth,label in buttonSpecs:

xinc = bwidth/2.0
p1 = Point(cx-xinc, cy-yinc)
p2 = Point(cx+xinc, cy+yinc)
b = Button(self.win, p1, p2, label)
b.activate()
self.buttons.append(b)

192 CHAPTER 11. DATA COLLECTIONS

def __createDisplay(self):
bg = Rectangle(Point(.5,5.5), Point(5.5,6.5))
bg.setFill(’white’)
bg.draw(self.win)
text = Text(Point(3,6), "")
text.draw(self.win)
text.setFace("courier")
text.setStyle("bold")
text.setSize(16)
self.display = text

def getKeyPress(self):
Waits for a button to be clicked and returns the label of
the button the was clicked.
while 1:

p = self.win.getMouse()
for b in self.buttons:

if b.clicked(p):
return b.getLabel() # method exit

def processKey(self, key):
Updates the display of the calculator for press of this key
text = self.display.getText()
if key == ’C’:

self.display.setText("")
elif key == ’<-’:

Backspace, slice off the last character.
self.display.setText(text[:-1])

elif key == ’=’:
Evaluate the expresssion and display the result.
the try...except mechanism "catches" errors in the
formula being evaluated.
try:

result = eval(text)
except:

result = ’ERROR’
self.display.setText(str(result))

else:
Normal key press, append it to the end of the display
self.display.setText(text+key)

def run(self):
Infinite ’event loop’ to process key presses.
while 1:

key = self.getKeyPress()
self.processKey(key)

This runs the program.
if __name__ == "__main__":

First create a calculator object
theCalc = Calculator()
Now call the calculator’s run method.
theCalc.run()

11.6. NON-SEQUENTIAL COLLECTIONS 193

Notice especially the very end of the program. To run the application, we create an instance of the Calculator
class and then call its run method.

11.6 Non-Sequential Collections

Python provides another built-in data type for collections, called a dictionary. While dictionaries are incred-
ibly useful, they are not as common in other languages as lists (arrays). The example programs in the rest of
the book will not use dictionaries, so you can skip the rest of this section if you’ve learned all you want to
about collections for the moment.

11.6.1 Dictionary Basics

Lists allow us to store and retrieve items from sequential collections. When we want to access an item in the
collection, we look it up by index—its position in the collection. Many applications require a more flexible
way to look up information. For example, we might want to retrieve information about a student or employee
based on their social security number. In programming terminology, this is a key-value pair. We access the
value (student information) associated with a particular key (social security number). If you think a bit, you
can come up with lots of other examples of useful key-value pairs: names and phone numbers, usernames
and passwords, zip codes and shipping costs, state names and capitals, sales items and quantity in stock, etc.

A collection that allows us to look up information associated with arbitrary keys is called a mapping.
Python dictionaries are mappings. Some other programming languages provide similar structures called
hashes or associative arrays. A dictionary can be created in Python by listing key-value pairs inside of curly
braces. Here is a simple dictionary that stores some fictional usernames and passwords.

>>> passwd = {"guido":"superprogrammer", "turing":"genius", "bill":"monopoly"}

Notice that keys and values are joined with a “:”, and commas are used to separate the pairs.
The main use for a dictionary is to look up the value associated with a particular key. This is done through

indexing notation.

>>> passwd["guido"]
’superprogrammer’
>>> passwd["bill"]
’monopoly’

In general,

<dictionary>[<key>]

returns the object associated with the given key.
Dictionaries are mutable; the value associated with a key can be changed through assignment.

>>> passwd["bill"] = "bluescreen"
>>> passwd
{’turing’: ’genius’, ’bill’: ’bluescreen’, ’guido’: ’superprogrammer’}

In this example, you can see that the value associated with ’bill’ has changed to ’bluescreen’.
Also notice that the dictionary prints out in a different order from how it was originally created. This is

not a mistake. Mappings are inherently unordered. Internally, Python stores dictionaries in a way that makes
key lookup very efficient. When a dictionary is printed out, the order of keys will look essentially random. If
you want to keep a collection of items in a certain order, you need a sequence, not a mapping.

To summarize, dictionaries are mutable collections that implement a mapping from keys to values. Our
password example showed a dictionary having strings as both keys and values. In general, keys can be any
immutable type, and values can be any type at all, including programmer-defined classes. Python dictionaries
are very efficient and can routinely store even hundreds of thousands of items.

194 CHAPTER 11. DATA COLLECTIONS

11.6.2 Dictionary Operations

Like lists, Python dictionaries support a number of handy built-in operations. You have already seen how
dictionaries can be defined by explicitly listing the key-value pairs in curly braces. You can also extend a
dictionary by adding new entries. Suppose a new user is added to our password system. We can expand the
dictionary by assigning a password for the new username.

>>> passwd[’newuser’] = ’ImANewbie’
>>> passwd
{’turing’: ’genius’, ’bill’: ’bluescreen’, \
’newuser’: ’ImANewbie’, ’guido’: ’superprogrammer’}

In fact, a common method for building dictionaries is to start with an empty collection and add the key-
value pairs one at a time. Suppose that usernames and passwords were stored in a file called passwords,
where each line of the file contains a username and password with a space between. We could easily create
the passwd dictionary from the file.

passwd = {}
for line in open(’passwords’,’r’).readlines():

user, pass = string.split(line)
passwd[user] = pass

To manipulate the contents of a dictionary, Python provides the following methods.

Method Meaning

� dict � .has key(� key �) Returns true if dictionary contains the specified key,
false if it doesn’t.

� dict � .keys() Returns a list of the keys.
� dict � .values() Returns a list of the values.

� dict � .items() Returns a list of tuples (key,value) representing
the key-value pairs.

del � dict � [� key �] Delete the specified entry.
� dict � .clear() Delete all entries.

These methods are mostly self-explanatory. For illustration, here is an interactive session using our pass-
word dictionary:

>>> passwd.keys()
[’turing’, ’bill’, ’newuser’, ’guido’]
>>> passwd.values()
[’genius’, ’bluescreen’, ’ImANewbie’, ’superprogrammer’]
>>> passwd.items()
[(’turing’, ’genius’), (’bill’, ’bluescreen’), (’newuser’, ’ImANewbie’), \
(’guido’, ’superprogrammer’)]

>>> passwd.has_key(’bill’)
1
>>> passwd.has_key(’fred’)
0
>>> passwd.clear()
>>> passwd
{}

11.6.3 Example Program: Word Frequency

Let’s write a program that analyzes text documents and counts how many times each word appears in the
document. This kind of analysis is sometimes used as a crude measure of the style similarity between two
documents and is also used by automatic indexing and archiving programs (such as Internet search engines).

11.6. NON-SEQUENTIAL COLLECTIONS 195

At the highest level, this is just a multi-accumulator problem. We need a count for each word that appears
in the document. We can use a loop that iterates through each word in the document and adds one to the
appropriate count. The only catch is that we will need hundreds or thousands of accumulators, one for each
unique word in the document. This is where a (Python) dictionary comes in handy.

We will use a dictionary where the keys are strings representing words in the document and the values are
ints that count of how many times the word appears. Let’s call our dictionary counts. To update the count
for a particular word, w, we just need a line of code something like this:

counts[w] = counts[w] + 1

This says to set the count associated with word w to be one more than the current count for w.
There is one small complication with using a dictionary here. The first time we encounter a word, it will

not yet be in counts. Attempting to access a non-existent key produces a run-time KeyError. To guard
against this, we need a decision in our algorithm.

if w is already in counts:
add one to the count for w

else:
set count for w to 1

This decision ensures that the first time a word is encountered, it will be entered into the dictionary with a
count of 1.

One way to implement this decision is to use the has key method for dictionaries.

if counts.has_key(w):
counts[w] = counts[w] + 1

else:
counts[w] = 1

Another approach is to use a try-except to catch the error.

try:
counts[w] = counts[w] + 1

except KeyError:
counts[w] = 1

This is a common pattern in programs that use dictionaries, and both of these coding styles are used.
The dictionary updating code will form the heart of our program. We just need to fill in the parts around

it. The first task is to split our text document into a sequence of words. In the process, we will also convert
all the text to lowercase (so occurrences of “Foo” match “foo”) and eliminate punctuation (so “foo,” matches
“foo”). Here’s the code to do that:

fname = raw_input("File to analyze: ")

read file as one long string
text = open(fname,’r’).read()

convert all letters to lower case
text = string.lower(text)

replace each punctuation character with a space
for ch in ’!"#$%&()*+,-./:;<=>?@[\\]ˆ_‘{|}˜’:

text = string.replace(text, ch, ’ ’)

split string at whitespace to form a list of words
words = string.split(text)

Now we can easily loop through the words to build the counts dictionary.

196 CHAPTER 11. DATA COLLECTIONS

counts = {}
for w in words:

try:
counts[w] = counts[w] + 1

except KeyError:
counts[w] = 1

Our last step is to print a report that summarizes the contents of counts. One approach might be to print
out the list of words and their associated counts in alphabetical order. Here’s how that could be done:

get list of words that appear in document
uniqueWords = counts.keys()

put list of words in alphabetical order
uniqueWords.sort()

print words and associated counts
for w in uniqueWords:

print w, counts[w]

For a large document, however, this is unlikely to be useful. There will be far too many words, most of
which only appear a few times. A more interesting analysis is to print out the counts for the n most frequent
words in the document. In order to do that, we will need to create a list that is sorted by counts (most to
fewest) and then select the first n items in the list.

We can start by getting a list of key-value pairs using the items method for dictionaries.

items = counts.items()

Here items will be a list of tuples (e.g., [(’foo’,5), (’bar’,7), (’spam’,376), � � �]). If we
simply sort this list (items.sort()) Python will put them in a standard order. Unfortunately, when Python
compares tuples, it orders them by components, left to right. Since the first component of each pair is the
word, items.sort() will put this list in alphabetical order, which is not what we want.

In order to put our pair list in the proper order, we need to investigate the sorting method for lists a bit
more carefully. When we first covered the sort method, I mentioned that it can take a comparison function
as an optional parameter. We can use this feature to tell Python how to sort the list of pairs.

If no comparison function is given, Python orders a list according to the the built-in function cmp. This
function accepts two values as parameters and returns -1, 0 or 1, corresponding to the relative ordering of the
parameters. Thus, cmp(a,b) returns -1 if a precedes b, 0 if they are the same, and 1 if a follows b. Here
are a few examples.

>>> cmp(1,2)
-1
>>> cmp("a","b")
-1
>>> cmp(3,1)
1
>>> cmp(3.1,3.1)
0

To sort our list of items, we need a comparison function that takes two items (i.e., word-count pairs) and
returns either -1, 0 or 1, giving the relative order in which we want those two items to appear in the sorted
list. Here is the code for a suitable comparison function:

def compareItems((w1,c1), (w2,c2)):
if c1 > c2:

return - 1
elif c1 == c2:

11.6. NON-SEQUENTIAL COLLECTIONS 197

return cmp(w1, w2)
else:

return 1

This function accepts two parameters, each of which is a tuple of two values. Notice I have taken advan-
tage of Python’s automatic tuple unpacking and written each parameter as a pair of variables. Take a look at
the decision structure. If the count in the first item is greater than the count in the second item, then the first
item should precede the second in the sorted list (since we want the most frequent words at the front of the
list) and the function returns -1. If the counts are equal, then we let Python compare the two word strings with
cmp. This ensures that groups of words with the same frequency will appear in alphabetical order relative to
each other. Finally, the else handles the case when the second count is larger; the function returns a 1 to
indicate that the first parameter should follow the second.

With this comparison function, it is now a simple matter to sort our items into the correct order.

items.sort(compareItems)

Notice here I have used just the name of the function as the parameter to sort. When a function name is
used like this (without any trailing parentheses), it tells Python that the function object itself is being referred
to. As you know, a function name followed by parentheses tells Python to call the function. In this case, we
are not calling the function, but rather sending the function object to the sort method to let it do the calling.

Now that our items are sorted in order from most to least frequent, we are ready to print a report of the n
most frequent words. Here’s a loop that does the trick:

for i in range(n):
print "%-10s%5d" % items[i]

Notice especially the formatted print statement. It prints a string, left-justified in ten spaces followed by an
int right-justified in five spaces. Normally, we would supply a pair of values to fill in the slots (e.g., print
"%-10s%5d" % (word, count)). In this case, however, items[i] is a pair, so Python can extract
the two values that it needs.

That about does it. Here is the complete program:

wordfreq.py
import string

def compareItems((w1,c1), (w2,c2)):
if c1 > c2:

return - 1
elif c1 == c2:

return cmp(w1, w2)
else:

return 1

def main():
print "This program analyzes word frequency in a file"
print "and prints a report on the n most frequent words.\n"

get the sequence of words from the file
fname = raw_input("File to analyze: ")
text = open(fname,’r’).read()
text = string.lower(text)
for ch in ’!"#$%&()*+,-./:;<=>?@[\\]ˆ_‘{|}˜’:

text = string.replace(text, ch, ’ ’)
words = string.split(text)

construct a dictionary of word counts

198 CHAPTER 11. DATA COLLECTIONS

counts = {}
for w in words:

try:
counts[w] = counts[w] + 1

except KeyError:
counts[w] = 1

output analysis of n most frequent words.
n = input("Output analysis of how many words? ")
items = counts.items()
items.sort(compareItems)
for i in range(n):

print "%-10s%5d" % items[i]

if __name__ == ’__main__’: main()

Just for fun, here’s the result of running this program to find the twenty most frequent words in the book
you’re reading right now.

This program analyzes word frequency in a file
and prints a report on the n most frequent words.

File to analyze: book.txt
Output analysis of how many words? 20

the 6428
a 2845
of 2622
to 2468
is 1936
that 1332
and 1259
in 1240
we 1030
this 985
for 719
you 702
program 684
be 670
it 618
are 612
as 607
can 583
will 480
an 470

11.7 Exercises

1. Given the initial statements

import string
s1 = [2,1,4,3]
s2 = [’c’,’a’,’b’]

show the result of evaluating each of the following sequence expressions:

11.7. EXERCISES 199

(a) s1 + s2

(b) 3 * s1 + 2 * s2

(c) s1[1]

(d) s1[1:3]

(e) s1 + s2[-1]

2. Given the same initial statements as in the previous problem, show the values of s1 and s2 after
executing each of the following statements. Treat each part independently (i.e., assume that s1 and s2
start with their original values each time).

(a) s1.remove(2)

(b) s1.sort().reverse()

(c) s1.append([s2.index(’b’)])

(d) s2.pop(s1.pop(2))

(e) s2.insert(s1[0], ’d’)

3. Modify the statistics package from the chapter so that client programs have more flexibility in com-
puting the mean and/or standard deviation. Specifically, redesign the library to have the following
functions:

mean(nums) Returns the mean of numbers in nums.

stdDev(nums) Returns the standard deviation of nums.

meanStdDev(nums) Returns both the mean and standard deviation of nums.

4. Most languages do not have the flexible built-in list (array) operations that Python has. Write an algo-
rithm for each of the following Python operations and test your algorithm by writing it up in a suitable
function. For example, as a function,reverse(myList) should do the same as myList.reverse().
Obviously, you are not allowed to use the corresponding Python method to implement your function.

(a) count(myList, x) (like myList.count(x))

(b) isin(myList, x) (like x in myList))

(c) index(myList, x) (like myList.index(x))

(d) reverse(myList) (like myList.reverse())

(e) sort(myList) (like myList.sort())

5. Write and test a function shuffle(myList) that scrambles a list into a random order, like shuffling
a deck of cards.

6. The Sieve of Eratosthenes is an elegant algorithm for finding all of the prime numbers up to some limit
n. The basic idea is to first create a list of numbers from 2 to n. The first number is removed from the
list, and announced as a prime number, and all multiples of this number up to n are removed from the
list. This process continues until the list is empty.

For example, if we wished to find all the primes up to 10, the list would originally contain 2, 3, 4, 5,
6, 7, 8, 9, 10. The 2 is removed and announced to be prime. Then 4, 6, 8 and 10 are removed, since
they are multiples of 2. That leaves 3, 5, 7, 9. Repeating the process, 3 is announced as prime and
removed, and 9 is removed because it is a multiple of 3. That leaves 5 and 7. The algorithm continues
by announcing that 5 is prime and removing it from the list. Finally, 7 is announced and removed, and
we’re done.

Write a program that prompts a user for n and then uses the sieve algorithm to find all the primes less
than or equal to n.

7. Create and test a Set class to represent a classical set. Your sets should support the following methods:

200 CHAPTER 11. DATA COLLECTIONS

Set(elements) Create a set (elements is the initial list of items in the set).

addElement(x) Adds x to the set.

deleteElement(x) Removes x from the set.

member(x) Returns true if x is in the set.

intersection(set2) Returns a new set containing just those elements that are common to this
set and set2.

union(set2) Returns a new set containing all of elements that are in this set, set2, or both.

subtract(set2) Returns a new set containing all the elements of this set that are not in set2.

Chapter 12

Object-Oriented Design

Now that you know some data structuring techniques, it’s time to stretch your wings and really put those
tools to work. Most modern computer applications are designed using a data-centered view of computing.
This so-called object-oriented design (OOD) process is a powerful complement to top-down design for the
development of reliable, cost-effective software systems. In this chapter, we will look at the basic principles
of OOD and apply them in a couple case studies.

12.1 The Process of OOD

The essence of design is describing a system in terms of magical black boxes and their interfaces. Each
component provides a set of services through its interface. Other components are users or clients of the
services.

A client only needs to understand the interface of a service; the details of how that service is implemented
are not important. In fact, the internal details may change radically and not affect the client at all. Similarly,
the component providing the service does not have to consider how the service might be used. The black box
just has to make sure that the service is faithfully delivered. This separation of concerns is what makes the
design of complex systems possible.

In top-down design, functions serve the role of our magical black boxes. A client program can use a
function as long as it understands what the function does. The details of how the task is accomplished are
encapsulated in the function definition.

In object-oriented design, the black boxes are objects. The magic behind objects lies in class definitions.
Once a suitable class definition has been written, we can completely ignore how the class works and just rely
on the external interface—the methods. This is what allows you to draw circles in graphics windows without
so much as a glance at the code in the graphics module. All the nitty-gritty details are encapsulated in the
class definitions for GraphWin and Circle.

If we can break a large problem into a set of cooperating classes, we drastically reduce the complexity
that must be considered to understand any given part of the program. Each class stands on its own. Object-
oriented design is the process of finding and defining a useful set of classes for a given problem. Like all
design, it is part art and part science.

There are many different approaches to OOD, each with its own special techniques, notations, gurus and
textbooks. I can’t pretend to teach you all about OOD in one short chapter. On the other hand, I’m not
convinced that reading many thick volumes will help much either. The best way to learn about design is to
do it. The more you design, the better you will get.

Just to get you started, here are some intuitive guidelines for object-oriented design.

1. Look for object candidates. Your goal is to define a set of objects that will be helpful in solving the
problem. Start with a careful consideration of the problem statement. Objects are usually described
by nouns. You might underline all of the nouns in the problem statement and consider them one by
one. Which of them will actually be represented in the program? Which of them have “interesting”
behavior? Things that can be represented as primitive data types (numbers or strings) are probably not

201

202 CHAPTER 12. OBJECT-ORIENTED DESIGN

important candidates for objects. Things that seem to involve a grouping of related data items (e.g.,
coordinates of a point or personal data about an employee) probably are.

2. Identify instance variables. Once you have uncovered some possible objects, think about the informa-
tion that each object will need to do its job. What kinds of values will the instance variables have?
Some object attributes will have primitive values; others might themselves be complex types that sug-
gest other useful objects/classes. Strive to find good “home” classes for all the data in your program.

3. Think about interfaces. When you have identified a potential object/class and some associated data,
think about what operations would be required for objects of that class to be useful. You might start
by considering the verbs in the problem statement. Verbs are used to describe actions—what must be
done. List the methods that the class will require. Remember that all manipulation of the object’s data
should be done through the methods you provide.

4. Refine the nontrivial methods. Some methods will look like they can be accomplished with a couple
lines of code. Other methods will require considerable work to develop an algorithm. Use top-down
design and stepwise refinement to flesh out the details of the more difficult methods. As you go along,
you may very well discover that some new interactions with other classes are needed, and this might
force you to add new methods to other classes. Sometimes you may discover a need for a brand-new
kind of object that calls for the definition of another class.

5. Design iteratively. As you work through the design, you will bounce back and forth between designing
new classes and adding methods to existing classes. Work on whatever seems to be demanding your
attention. No one designs a program top to bottom in a linear, systematic fashion. Make progress
wherever it seems progress needs to be made.

6. Try out alternatives. Don’t be afraid to scrap an approach that doesn’t seem to be working or to follow
an idea and see where it leads. Good design involves a lot of trial and error. When you look at the
programs of others, you are seeing finished work, not the process they went through to get there. If a
program is well designed, it probably is not the result of a first try. Fred Brooks , a legendary software
engineer, coined the maxim: “Plan to throw one away.” Often you won’t really know how a system
should be built until you’ve already built it the wrong way.

7. Keep it simple. At each step in the design, try to find the simplest approach that will solve the problem
at hand. Don’t design in extra complexity until it is clear that a more complex approach is needed.

The next sections will walk you through a couple case studies that illustrate aspects of OOD. Once you
thoroughly understand these examples, you will be ready to tackle your own programs and refine your design
skills.

12.2 Case Study: Racquetball Simulation

For our first case study, let’s return to the racquetball simulation from Chapter 9. You might want to go back
and review the program that we developed the first time around using top-down design.

The crux of the problem is to simulate multiple games of racquetball where the ability of the two op-
ponents is represented by the probability that they win a point when they are serving. The inputs to the
simulation are the probability for player A, the probability for player B, and the number of games to simu-
late. The output is a nicely formatted summary of the results.

In the original version of the program, we ended a game when one of the players reached a total of 15
points. This time around, let’s also consider shutouts. If one player gets to 7 before the other player has
scored a point, the game ends. Our simulation should keep track of both the number of wins for each player
and the number of wins that are shutouts.

12.2. CASE STUDY: RACQUETBALL SIMULATION 203

12.2.1 Candidate Objects and Methods

Our first task is to find a set of objects that could be useful in solving this problem. We need to simulate a
series of racquetball games between two players and record some statistics about the series of games. This
short description already suggests one way of dividing up the work in the program. We need to do two basic
things: simulate a game and keep track of some statistics.

Let’s tackle simulation of the game first. We can use an object to represent a single game of racquetball.
A game will have to keep track of information about two players. When we create a new game, we will
specify the skill levels of the players. This suggests a class, let’s call it RBallGame, with a constructor that
requires parameters for the probabilities of the two players.

What does our program need to do with a game? Obviously, it needs to play it. Let’s give our class a
play method that simulates the game until it is over. We could create and play a racquetball game with two
lines of code.

theGame = RBallGame(probA, probB)
theGame.play()

To play lots of games, we just need to put a loop around this code. That’s all we really need in RBallGame
to write the main program. Let’s turn our attention to collecting statistics about the games.

Obviously, we will have to keep track of at least four counts in order to print a summary of our simulations:
wins for A, wins for B, shutouts for A, and shutouts for B. We will also print out the number of games
simulated, but this can be calculated by adding the wins for A and B. Here we have four related pieces of
information. Rather than treating them independently, let’s group them into a single object. This object will
be an instance of a class called SimStats.

A SimStats object will keep track of all the information about a series of games. We have already
analyzed the four crucial pieces of information. Now we have to decide what operations will be useful. For
starters, we need a constructor that initializes all of the counts to 0.

We also need a way of updating the counts as each new game is simulated. Let’s give our object an
update method. The update of the statistics will be based on the outcome of a game. We will have to
send some information to the statistics object so that the update can be done appropriately. An easy approach
would be to just send the entire game and let update extract whatever information it needs.

Finally, when all of the games have been simulated, we need to print out a report of the results. This
suggests a printReport method that prints out a nice report of the accumulated statistics.

We have now done enough design that we can actually write the main function for our program. Most of
the details have been pushed off into the definition of our two classes.

def main():
printIntro()
probA, probB, n = getInputs()
Play the games
stats = SimStats()
for i in range(n):

theGame = RBallGame(probA, probB) # create a new game
theGame.play() # play it
stats.update(theGame) # get info about completed game

Print the results
stats.printReport()

I have also used a couple helper functions to print an introduction and get the inputs. You should have no
trouble writing these functions.

Now we have to flesh out the details of our two classes. The SimStats class looks pretty easy—let’s
tackle that one first.

12.2.2 Implementing SimStats

The constructor for SimStats just needs to initialize the four counts to 0. Here is an obvious approach:

204 CHAPTER 12. OBJECT-ORIENTED DESIGN

class SimStats:
def __init__(self):

self.winsA = 0
self.winsB = 0
self.shutsA = 0
self.shutsB = 0

Now let’s take a look at the update method. It takes a game as a normal parameter and must update the
four counts accordingly. The heading of the method will look like this:

def update(self, aGame):

But how exactly do we know what to do? We need to know the final score of the game, but this information
resides inside of aGame. Remember, we are not allowed to directly access the instance variables of aGame.
We don’t even know yet what those instance variables will be.

Our analysis suggests the need for a new method in the RBallGame class. We need to extend the
interface so that aGame has a way of reporting the final score. Let’s call the new method getScores and
have it return the score for player A and the score for player B.

Now the algorithm for update is straightforward.

def update(self, aGame):
a, b = aGame.getScores()
if a > b: # A won the game

self.winsA = self.winsA + 1
if b == 0:

self.shutsA = self.shutsA + 1
else: # B won the game

self.winsB = self.winsB + 1
if a == 0:

self.shutsB = self.shutsB + 1

We can complete the SimStats class by writing a method to print out the results. Our printReport
method will generate a table that shows the wins, win percentage, shutouts and shutout percentage for each
player. Here is a sample output:

Summary of 500 games:

wins (% total) shutouts (% wins)
--
Player A: 411 82.2% 60 14.6%
Player B: 89 17.8% 7 7.9%

It is easy to print out the headings for this table, but the formatting of the lines takes a little more care.
We want to get the columns lined up nicely, and we must avoid division by zero in calculating the shutout
percentage for a player who didn’t get any wins. Let’s write the basic method but procrastinate a bit and push
off the details of formatting the line into another method, printLine. The printLine method will need
the player label (A or B), number of wins and shutouts, and the total number of games (for calculation of
percentages).

def printReport(self):
Print a nicely formatted report
n = self.winsA + self.winsB
print "Summary of", n , "games:"
print
print " wins (% total) shutouts (% wins) "
print "--"
self.printLine("A", self.winsA, self.shutsA, n)
self.printLine("B", self.winsB, self.shutsB, n)

12.2. CASE STUDY: RACQUETBALL SIMULATION 205

To finish out the class, we implement the printLine method. This method will make heavy use of
string formatting. A good start is to define a template for the information that will appear in each line.

def printLine(self, label, wins, shuts, n):
template = "Player %s: %4d %5.1f%% %11d %s"
if wins == 0: # Avoid division by zero!

shutStr = "-----"
else:

shutStr = "%4.1f%%" % (float(shuts)/wins*100)
print template % (label, wins, float(wins)/n*100, shuts, shutStr)

Notice how the shutout percentage is handled. The main template includes it as a string, and the if statement
takes care of formatting this piece to prevent division by zero.

12.2.3 Implementing RBallGame

Now that we have wrapped up the SimStats class, we need to turn our attention to RBallGame. Summa-
rizing what we have decided so far, this class needs a constructor that accepts two probabilities as parameters,
a play method that plays the game, and a getScores method that reports the scores.

What will a racquetball game need to know? To actually play the game, we have to remember the
probability for each player, the score for each player, and which player is serving. If you think about this
carefully, you will see that probability and score are properties related to particular players, while the server
is a property of the game between the two players. That suggests that we might simply consider that a game
needs to know who the players are and which is serving. The players themselves can be objects that know
their probability and score. Thinking about the RBallGame class this way leads us to design some new
objects.

If the players are objects, then we will need another class to define their behavior. Let’s name that class
Player. A Player object will keep track of its probability and current score. When a Player is first
created the probability will be supplied as a parameter, but the score will just start out at 0. We’ll flesh out
the design of Player class methods as we work on RBallGame.

We are now in a position to define the constructor for RBallGame. The game will need instance variables
for the two players and another variable to keep track of which player is serving.

class RBallGame:
def __init__(self, probA, probB):

self.playerA = Player(probA)
self.playerB = Player(probB)
self.server = self.PlayerA # Player A always serves first

Sometimes it helps to draw a picture to see the relationships among the objects that we are creating.
Suppose we create an instance of RBallGame like this:

theGame = RBallGame(.6,.5)

Figure 12.1 shows an abstract picture of the objects created by this statement and their inter-relationships.
OK, now that we can create an RBallGame, we need to figure out how to play it. Going back to the

dicussion of racquetball from Chapter 9, we need an algorithm that continues to serve rallies and either award
points or change the server as appropriate until the game is over. We can translate this loose algorithm almost
directly into our object-based code.

First, we need a loop that continues as long as the game is not over. Obviously, the decision of whether
the game has ended or not can only be made by looking at the game object itself. Let’s just assume that
an appropriate isOver method can be written. The beginning of our play method can make use of this
(yet-to-be-written) method.

def play(self):
while not self.isOver():

206 CHAPTER 12. OBJECT-ORIENTED DESIGN

playerB:

RBallGame

server:

playerA:playerA:

Player

prob:

score:

Player

prob:

score: 0

0.6

0.5

0

Figure 12.1: Abstract view of RBallGame object.

Inside of the loop, we need to have the serving player serve and, based on the result, decide what to do.
This suggests that Player objects should have a method that performs a serve. After all, whether the serve
is won or not depends on the probability that is stored inside of each player object. We’ll just ask the server
if the serve is won or lost.

if self.server.winsServe():

Based on this result, we either award a point or change the server. To award a point, we need to change a
player’s score. This again requires the player do something, namely increment the score. Changing servers,
on the other hand, is done at the game level, since this information is kept in the server instance variable
of RBallGame.

Putting it all together, here is our play method:

def play(self):
while not self.isOver():

if self.server.winsServe():
self.server.incScore()

else:
self.changeServer()

As long as you remember that self is an RBallGame, this code should be clear. While the game is not
over, if the server wins a serve, award a point to the server, otherwise change the server.

Of course the price we pay for this simple algorithm is that we now have two new methods (isOver and
changeServer) that need to be implemented in the RBallGame class and two more (winsServer and
incScore) for the Player class.

Before attacking the new methods of the RBallGame class, let’s go back and finish up the other top-level
method of the class, namely getScores. This one just returns the scores of the two players. Of course,
we run into the same problem again. It is the player objects that actually know the scores, so we will need a
method that asks a player to return its score.

def getScore(self):
return self.playerA.getScore(), self.playerB.getScore()

This adds one more method to be implemented in the Player class. Make sure you put that on our list to
complete later.

To finish out the RBallGame class, we need to write the isOver and changeServermethods. Given
what we have developed already and our previous version of this program, these methods are straightforward.
I’ll leave those as an exercise for you at the moment. If you’re looking for my solutions, skip to the complete
code at the end of this section.

12.2. CASE STUDY: RACQUETBALL SIMULATION 207

12.2.4 Implementing Player

In developing the RBallGame class, we discovered the need for a Player class that encapsulates the
service probability and current score for a player. The Player class needs a suitable constructor and methods
for winsServe, incScore and getScore.

If you are getting the hang of this object-oriented approach, you should have no trouble coming up with
a constructor. We just need to initialize the instance variables. The player’s probability will be passed as a
parameter, and the score starts at 0.

def __init__(self, prob):
Create a player with this probability
self.prob = prob
self.score = 0

The other methods for our Player class are even simpler. To see if a player wins a serve, we compare
the probability to a random number between 0 and 1.

def winsServe(self):
return random() <= self.prob

To give a player a point, we simply add one to the score.

def incScore(self):
self.score = self.score + 1

The final method just returns the value of the score.

def getScore(self):
return self.score

Initially, you may think that it’s silly to create a class with a bunch of one- or two-line methods. Actually,
it’s quite common for a well-modularized, objected-oriented program to have lots of trivial methods. The
point of design is to break a problem down into simpler pieces. If those pieces are so simple that their
implementation is obvious, that gives us confidence that we must have gotten it right.

12.2.5 The Complete Program

That pretty much wraps up our object-oriented version of the racquetball simulation. The complete program
follows. You should read through it and make sure you understand exactly what each class does and how it
does it. If you have questions about any parts, go back to the discussion above to figure it out.

objrball.py -- Simulation of a racquet game.
Illustrates design with objects.

from random import random

class Player:
A Player keeps track of service probability and score

def __init__(self, prob):
Create a player with this probability
self.prob = prob
self.score = 0

def winsServe(self):
RETURNS a Boolean that is true with probability self.prob
return random() <= self.prob

208 CHAPTER 12. OBJECT-ORIENTED DESIGN

def incScore(self):
Add a point to this player’s score
self.score = self.score + 1

def getScore(self):
RETURNS this player’s current score
return self.score

class RBallGame:
A RBallGame represents a game in progress. A game has two players
and keeps track of which one is currently serving.

def __init__(self, probA, probB):
Create a new game having players with the given probs.
self.playerA = Player(probA)
self.playerB = Player(probB)
self.server = self.playerA # Player A always serves first

def play(self):
Play the game to completion
while not self.isOver():

if self.server.winsServe():
self.server.incScore()

else:
self.changeServer()

def isOver(self):
RETURNS game is finished (i.e. one of the players has won).
a,b = self.getScores()
return a == 15 or b == 15 or \

(a == 7 and b == 0) or (b==7 and a == 0)

def changeServer(self):
Switch which player is serving
if self.server == self.playerA:

self.server = self.playerB
else:

self.server = self.playerA

def getScores(self):
RETURNS the current scores of player A and player B
return self.playerA.getScore(), self.playerB.getScore()

class SimStats:
SimStats handles accumulation of statistics across multiple
(completed) games. This version tracks the wins and shutouts for
each player.

def __init__(self):
Create a new accumulator for a series of games
self.winsA = 0
self.winsB = 0
self.shutsA = 0
self.shutsB = 0

12.2. CASE STUDY: RACQUETBALL SIMULATION 209

def update(self, aGame):
Determine the outcome of aGame and update statistics
a, b = aGame.getScores()
if a > b: # A won the game

self.winsA = self.winsA + 1
if b == 0:

self.shutsA = self.shutsA + 1
else: # B won the game

self.winsB = self.winsB + 1
if a == 0:

self.shutsB = self.shutsB + 1

def printReport(self):
Print a nicely formatted report
n = self.winsA + self.winsB
print "Summary of", n , "games:"
print
print " wins (% total) shutouts (% wins) "
print "--"
self.printLine("A", self.winsA, self.shutsA, n)
self.printLine("B", self.winsB, self.shutsB, n)

def printLine(self, label, wins, shuts, n):
template = "Player %s: %4d %5.1f%% %11d %s"
if wins == 0: # Avoid division by zero!

shutStr = "-----"
else:

shutStr = "%4.1f%%" % (float(shuts)/wins*100)
print template % (label, wins, float(wins)/n*100, shuts, shutStr)

def printIntro():
print "This program simulates games of racquetball between two"
print ’players called "A" and "B". The ability of each player is’
print "indicated by a probability (a number between 0 and 1) that"
print "the player wins the point when serving. Player A always"
print "has the first serve.\n"

def getInputs():
Returns the three simulation parameters
a = input("What is the prob. player A wins a serve? ")
b = input("What is the prob. player B wins a serve? ")
n = input("How many games to simulate? ")
return a, b, n

def main():
printIntro()

probA, probB, n = getInputs()

Play the games
stats = SimStats()
for i in range(n):

theGame = RBallGame(probA, probB) # create a new game

210 CHAPTER 12. OBJECT-ORIENTED DESIGN

theGame.play() # play it
stats.update(theGame) # get info about completed game

Print the results
stats.printReport()

main()
raw_input("\nPress <Enter> to quit")

12.3 Case Study: Dice Poker

Back in Chapter 10, I suggested that objects are particularly useful for the design of graphical user interfaces.
I want to finish up this chapter by looking at a graphical application using some of the widgets that we
developed in previous chapters.

12.3.1 Program Specification

Our goal is to write a game program that allows a user to play video poker using dice. The program will
display a hand consisting of five dice. The basic set of rules is as follows:

� The player starts with $100.

� Each round costs $10 to play. This amount is subtracted from the user’s money at the start of the round.

� The player initially rolls a completely random hand (i.e., all five dice are rolled).

� The player gets two chances to enhance the hand by rerolling some or all of the dice.

� At the end of the hand, the player’s money is updated according to the following payout schedule:

Hand Pay
Two Pairs 5
Three of a Kind 8
Full House (A Pair and a Three of a Kind) 12
Four of a Kind 15
Straight (1–5 or 2–6) 20
Five of a Kind 30

Ultimately, we want this program to present a nice graphical interface. Our interaction will be through
mouse clicks. The interface should have the following characteristics:

� The current score (amount of money) is constantly displayed.

� The program automatically terminates if the player goes broke.

� The player may choose to quit at appropriate points during play.

� The interface will present visual cues to indicate what is going on at any given moment and what the
valid user responses are.

12.3.2 Identifying Candidate Objects

Our first step is to analyze the program description and identify some objects that will be useful in attacking
this problem. This is a game involving dice and money. Are either of these good candidates for objects? Both
the money and an individual die can be simply represented as numbers. By themselves, they do not seem to
be good object candidates. However, the game uses five dice, and this sounds like a collection. We will need
to be able to roll all the dice or a selection of dice as well as analyze the collection to see what it scores.

We can encapsulate the information about the dice in a Dice class. Here are a few obvious operations
that this class will have to implement.

12.3. CASE STUDY: DICE POKER 211

constructor Create the initial collection.

rollAll Assign random values to each of the five dice.

roll Assign a random value to some subset of the dice, while maintaining the current value of others.

values Return the current values of the five dice.

score Return the score for the dice.

We can also think of the entire program as an object. Let’s call the class PokerApp. A PokerApp
object will keep track of the current amount of money, the dice, the number of rolls, etc. It will implement a
run method that we use to get things started and also some helper methods that are used to implement run.
We won’t know exactly what methods are needed until we design the main algorithm.

Up to this point, I have concentrated on the actual game that we are implementing. Another component to
this program will be the user interface. One good way to break down the complexity of a more sophisticated
program is to separate the user interface from the main guts of the program. This is often called the model-
view approach. Our program implements some model (in this case, it models a poker game), and the interface
is a view of the current state of the model.

One way of separating out the interface is to encapsulate the decisions about the interface in a separate
interface object. An advantage of this approach is that we can change the look and feel of the program simply
by substituting a different interface object. For example, we might have a text-based version of a progam and
a graphical version.

Let’s assume that our program will make use of an interface object, call it a PokerInterface. It’s
not clear yet exactly what behaviors we will need from this class, but as we refine the PokerApp class, we
will need to get information from the user and also display information. These will correspond to methods
implemented by the PokerInterface class.

12.3.3 Implementing the Model

So far, we have a pretty good picture of what the Dice class will do and a starting point for implementing
the PokerApp class. We could proceed by working on either of these classes. We won’t really be able to try
out the PokerApp class until we have dice, so let’s start with the lower-level Dice class.

Implementing Dice

The Dice class implements a collection of dice, which are just changing numbers. The obvious representa-
tion is to use a list of five ints. Our constructor needs to create a list and assign some initial values.

class Dice:
def __init__(self):

self.dice = [0]*5
self.rollAll()

This code first creates a list of five zeroes. These need to be set to some random values. Since we are going
to implement a rollAll function anyway, calling it here saves duplicating that code.

We need methods to roll selected dice and also to roll all of the dice. Since the latter is a special case of
the former, let’s turn our attention to the roll function, which rolls a subset. We can specify which dice to
roll by passing a list of indexes. For example, roll([0,3,4]) would roll the dice in positions 0, 3 and 4
of the dice list. We just need a loop that goes through the parameter and generates a new random value for
each position.

def roll(self, which):
for pos in which:

self.dice[pos] = randrange(1,7)

Next, we can use roll to implement rollAll as follows:

212 CHAPTER 12. OBJECT-ORIENTED DESIGN

def rollAll(self):
self.roll(range(5))

I used range(5) to generate a list of all the indexes.
The values function is used to return the values of the dice so that they can be displayed. Another

one-liner suffices.

def values(self):
return self.dice[:]

Notice that I created a copy of the dice list by slicing it. That way, if a Dice client modifies the list that
it gets back from values, it will not affect the original copy stored in the Dice object. This defensive
programming prevents other parts of the code from accidently messing with our object.

Finally, we come to the score method. This is the function that will determine the worth of the current
dice. We need to examine the values and determine whether we have any of the patterns that lead to a payoff,
namely Five of a Kind, Four of a Kind, Full House, Three of a Kind, Two Pairs, or Straight. Our function
will need some way to indicate what the payoff is. Let’s return a string labeling what the hand is and an int
that gives the payoff amount.

We can think of this function as a multi-way decision. We simply need to check for each possible hand.
If we do so in a sensible order, we can guarantee giving the correct payout. For example, a full house also
contains a three of a kind. We need to check for the full house before checking for three of a kind, since the
full house is more valuable.

One simple way of checking the hand is to generate a list of the counts of each value. That is, counts[i]
will be the number of times that the value i occurs in dice. If the dice are: [3,2,5,2,3] then the count
list would be [0,0,2,2,0,1,0]. Notice that counts[0] will always be zero, since dice values are in
the range 1–6. Checking for various hands can then be done by looking for various values in counts. For
example, if counts contains a 3 and a 2, the hand contains a triple and a pair, and hence, is a full house.

Here’s the code:

def score(self):
Create the counts list
counts = [0] * 7
for value in self.dice:

counts[value] = counts[value] + 1

score the hand
if 5 in counts:

return "Five of a Kind", 30
elif 4 in counts:

return "Four of a Kind", 15
elif (3 in counts) and (2 in counts):

return "Full House", 12
elif 3 in counts:

return "Three of a Kind", 8
elif not (2 in counts) and (counts[1]==0 or counts[6] == 0):

return "Straight", 20
elif counts.count(2) == 2:

return "Two Pairs", 5
else:

return "Garbage", 0

The only tricky part is the testing for straights. Since we have already checked for 5, 4 and 3 of a kind,
checking that there are no pairs not 2 in counts guarantees that the dice show five distinct values. If
there is no 6, then the values must be 1–5; likewise, no 1 means the values must be 2–6.

At this point, we could try out the Dice class to make sure that it is working correctly. Here is a short
interaction showing some of what the class can do:

12.3. CASE STUDY: DICE POKER 213

>>> from dice import Dice
>>> d = Dice()
>>> d.values()
[6, 3, 3, 6, 5]
>>> d.score()
(’Two Pairs’, 5)
>>> d.roll([4])
>>> d.values()
[6, 3, 3, 6, 4]
>>> d.roll([4])
>>> d.values()
[6, 3, 3, 6, 3]
>>> d.score()
(’Full House’, 12)

We would want to be sure that each kind of hand scores properly.

Implementing PokerApp

Now we are ready to turn our attention to the task of actually implementing the poker game. We can use
top-down design to flesh out the details and also suggest what methods will have to be implemented in the
PokerInterface class.

Initially, we know that the PokerApp will need to keep track of the dice, the amount of money, and
some user interface. Let’s initialize these values in the constructor.

class PokerApp:
def __init__(self):

self.dice = Dice()
self.money = 100
self.interface = PokerInterface()

To run the program, we will create an instance of this class and call its run method. Basically, the
program will loop, allowing the user to continue playing hands until he or she is either out of money or
chooses to quit. Since it costs $10 to play a hand, we can continue as long as self.money >= 10.
Determining whether the user actually wants to play another hand must come from the user interface. Here
is one way we might code the run method:

def run(self):
while self.money >= 10 and self.interface.wantToPlay():

self.playRound()
self.interface.close()

Notice the call to interface.close at the bottom. This will allow us to do any necessary cleaning up
such as printing a final message for the user or closing a graphics window.

Most of the work of the program has now been pushed into the playRound method. Let’s continue the
top-down process by focusing our attention here. Each round will consist of a series of rolls. Based on these
rolls, the program will have to adjust the player’s score.

def playRound(self):
self.money = self.money - 10
self.interface.setMoney(self.money)
self.doRolls()
result, score = self.dice.score()
self.interface.showResult(result, score)
self.money = self.money + score
self.interface.setMoney(self.money)

214 CHAPTER 12. OBJECT-ORIENTED DESIGN

This code only really handles the scoring aspect of a round. Anytime new information must be shown to the
user, a suitable method from interface is invoked. The $10 fee to play a round is first deducted and the
interface is updated with the new amount of money remaining. The program then processes a series of rolls
(doRolls), shows the user the result, and updates the amount of money accordingly.

Finally, we are down to the nitty-gritty details of implementing the dice rolling process. Initially, all of
the dice will be rolled. Then we need a loop that continues rolling user-selected dice until either the user
chooses to quit rolling or the limit of three rolls is reached. Let’s use a local variable rolls to keep track of
how many times the dice have been rolled. Obviously, displaying the dice and getting the the list of dice to
roll must come from interaction with the user through interface.

def doRolls(self):
self.dice.rollAll()
roll = 1
self.interface.setDice(self.dice.values())
toRoll = self.interface.chooseDice()
while roll < 3 and toRoll != []:

self.dice.roll(toRoll)
roll = roll + 1
self.interface.setDice(self.dice.values())
if roll < 3:

toRoll = self.interface.chooseDice()

At this point, we have completed the basic functions of our interactive poker program. That is, we have a
model of the process for playing poker. We can’t really test out this program yet, however, because we don’t
have a user interface.

12.3.4 A Text-Based UI

In designing PokerAppwe have also developed a specification for a generic PokerInterface class. Our
interface must support the methods for displaying information: setMoney, setDice, and showResult.
It must also have methods that allow for input from the user: wantToPlay, and chooseDice. These
methods can be implemented in many different ways, producing programs that look quite different even
though the underlying model, PokerApp, remains the same.

Usually, graphical interfaces are much more complicated to design and build than text-based ones. If we
are in a hurry to get our application running, we might first try building a simple text-based interface. We can
use this for testing and debugging of the model without all the extra complication of a full-blown GUI.

First, let’s tweak our PokerApp class a bit so that the user interface is supplied as a parameter to the
constructor.

class PokerApp:
def __init__(self, interface):

self.dice = Dice()
self.money = 100
self.interface = interface

Then we can easily create versions of the poker program using different interfaces.
Now let’s consider a bare-bones interface to test out the poker program. Our text-based version will not

present a finished application, but rather, give us a minimalist interface solely to get the program running.
Each of the necessary methods can be given a trivial implementation.

Here is a complete TextInterface class using this approach:

file: textpoker.py
class TextInterface:

def __init__(self):
print "Welcome to video poker."

12.3. CASE STUDY: DICE POKER 215

def setMoney(self, amt):
print "You currently have $%d." % (amt)

def setDice(self, values):
print "Dice:", values

def wantToPlay(self):
ans = raw_input("Do you wish to try your luck? ")
return ans[0] in "yY"

def close(self):
print "\nThanks for playing!"

def showResult(self, msg, score):
print "%s. You win $%d." % (msg, score)

def chooseDice(self):
return input("Enter list of which to change ([] to stop) ")

Using this interface, we can test out our PokerApp program to see if we have implemented a correct
model. Here is a complete program making use of the modules that we have developed:

textpoker.py -- video dice poker using a text-based interface.

from pokerapp import PokerApp
from textinter import TextInterface

inter = TextInterface()
app = PokerApp(inter)
app.run()

Basically, all this program does is create a text-based interface and then build a PokerApp using this inter-
face and start it running.

Running this program, we get a rough but useable interaction.

Welcome to video poker.
Do you wish to try your luck? y
You currently have $90.
Dice: [6, 4, 4, 2, 4]
Enter list of which to change ([] to stop) [0,4]
Dice: [1, 4, 4, 2, 2]
Enter list of which to change ([] to stop) [0]
Dice: [2, 4, 4, 2, 2]
Full House. You win $12.
You currently have $102.
Do you wish to try your luck? y
You currently have $92.
Dice: [5, 6, 4, 4, 5]
Enter list of which to change ([] to stop) [1]
Dice: [5, 5, 4, 4, 5]
Enter list of which to change ([] to stop) []
Full House. You win $12.
You currently have $104.
Do you wish to try your luck? y
You currently have $94.

216 CHAPTER 12. OBJECT-ORIENTED DESIGN

Dice: [3, 2, 1, 1, 1]
Enter list of which to change ([] to stop) [0,1]
Dice: [5, 6, 1, 1, 1]
Enter list of which to change ([] to stop) [0,1]
Dice: [1, 5, 1, 1, 1]
Four of a Kind. You win $15.
You currently have $109.
Do you wish to try your luck? n

Thanks for playing!

You can see how this interface provides just enough so that we can test out the model. In fact, we’ve got a
game that’s already quite a bit of fun to play!

12.3.5 Developing a GUI

Now that we have a working program, let’s turn our attention to a nicer graphical interface. Our first step must
be to decide exactly how we want our interface to look and function. The interface will have to support the
various methods found in the text-based version and will also probably have some additional helper methods.

Designing the Interaction

Let’s start with the basic methods that must be supported and decide exactly how interaction with the user
will occur. Clearly, in a graphical interface, the faces of the dice and the current score should be continuously
displayed. The setDice and setMoney methods will be used to change those displays. That leaves
one output method, showResult, that we need to accommodate. One common way to handle this sort of
tranisent information is with a message at the bottom of the window. This is sometimes called a status bar.

To get information from the user, we will make use of buttons. In wantToPlay, the user will have to
decide between either rolling the dice or quitting. We could include “Roll Dice” and “Quit” buttons for this
choice. That leaves us with figuring out how the user should choose dice.

To implement chooseDice, we could provide a button for each die and have the user click the buttons
for the dice they want to roll. When the user is done choosing the dice, they could click the “Roll Dice”
button again to roll the selected dice. Elaborating on this idea, it would be nice if we allowed the user to
change his or her mind while selecting the dice. Perhaps clicking the button of a currently selected die would
cause it to become unselected. The clicking of the button will serve as a sort of toggle that selects/unselects
a particular die. The user commits to a certain selection by clicking on “Roll Dice.”

Our vision for chooseDice suggests a couple of tweaks for the interface. First, we should have some
way of showing the user which dice are currently selected. There are lots of ways we could do this. One
simple approach would be to change the color of the die. Let’s “gray out” the pips on the dice selected for
rolling. Second, we need a good way for the user to indicate that they wish to stop rolling. That is, they
would like the dice scored just as they stand. We could handle this by having them click the “Roll Dice”
button when no dice are selected, hence asking the program to roll no dice. Another approach would be to
provide a separate button to click that causes the dice to be scored. The latter approach seems a bit more
intuitive/informative. Let’s add a “Score” button to the interface.

Now we have a basic idea of how the interface will function. We still need to figure out how it will look.
What is the exact layout of the widgets? Figure 12.2 is a sample of how the interface might look. I’m sure
those of you with a more artisitic eye can come up with a more pleasing interface, but we’ll use this one as
our working design.

Managing the Widgets

The graphical interface that we are developing makes use of buttons and dice. Our intent is to resue the
Button and DieView classes for these widgets that were developed in previous chapters. The Button
class can be used as is, and since we have quite a number of buttons to manage, we can use a list of Buttons,
similar to the approach we used in the calculator program from Chapter 11.

12.3. CASE STUDY: DICE POKER 217

Figure 12.2: GUI interface for video dice poker.

Unlike the buttons in the calculator program, the buttons of our poker interface will not be active all of the
time. For example, the dice buttons will only be active when the user is actually in the process of choosing
dice. When user input is required, the valid buttons for that interaction will be set active and the others will be
inactive. To implement this behavior, we can add a helper method called choose to the PokerInterface
class.

The choose method takes a list of button labels as a parameter, activates them, and then waits for the
user to click one of them. The return value of the function is the label of the button that was clicked. We can
call the choose method whenever we need input from the user. For example, if we are waiting for the user
to choose either the “Roll Dice” or “Quit” button, we would use a sequence of code like this:

choice = self.choose(["Roll Dice", "Quit"])
if choice == "Roll Dice":

...

Assuming the buttons are stored in an instance variable called buttons, here is one possible implemen-
tation of choose:

def choose(self, choices):
buttons = self.buttons

activate choice buttons, deactivate others
for b in buttons:

if b.getLabel() in choices:
b.activate()

else:
b.deactivate()

get mouse clicks until an active button is clicked
while 1:

p = self.win.getMouse()
for b in buttons:

218 CHAPTER 12. OBJECT-ORIENTED DESIGN

if b.clicked(p):
return b.getLabel() # function exit here.

The other widgets in our interface will be our DieView that we developed in the last two chapters.
Basically, we will use the same class as before, but we need to add just a bit of new functionality. As
discussed above, we want to change the color of a die to indicate whether it is selected for rerolling.

You might want to go back and review the DieView class. Remember, the class contructor draws
a square and seven circles to represent the positions where the pips of various values will appear. The
setValue method turns on the appropriate pips to display a given value. To refresh your memory a bit,
here is the setValue method as we left it:

def setValue(self, value):
Turn all the pips off
for pip in self.pips:

pip.setFill(self.background)

Turn the appropriate pips back on
for i in self.onTable[value]:

self.pips[i].setFill(self.foreground)

We need to modify the DieView class by adding a setColor method. This method will be used to
change the color that is used for drawing the pips. As you can see in the code for setValue, the color of
the pips is determined by the value of the instance variable foreground. Of course, changing the value of
foregroud will not actually change the appearance of the die until it is redrawn using the new color.

The algorithm for setColor seems straightforward. We need two steps:

change foreground to the new color
redraw the current value of the die

Unfortunately, the second step presents a slight snag. We already have code that draws a value, namely
setValue. But setValue requires us to send the value as a parameter, and the current version of
DieView does not store this value anywhere. Once the proper pips have been turned on, the actual value is
discarded.

In order to implement setColor, we need to tweak setValue so that it remembers the current value.
Then setColor can redraw the die using its current value. The change to setValue is easy; we just need
to add a single line.

self.value = value

This line stores the value parameter in an instance variable called value.
With the modified version of setValue, implementing setColor is a breeze.

def setColor(self, color):
self.foreground = color
self.setValue(self.value)

Notice how the last line simply calls setValue to (re)draw the die, passing along the value that was saved
from the last time setValue was called.

Creating the Interface

Now that we have our widgets under control, we are ready to actually implement our GUI poker interface.
The constructor will create all of our widgets, setting up the interface for later interactions.

class GraphicsInterface:
def __init__(self):

self.win = GraphWin("Dice Poker", 600, 400)
self.win.setBackground("green3")

12.3. CASE STUDY: DICE POKER 219

banner = Text(Point(300,30), "Python Poker Parlor")
banner.setSize(24)
banner.setFill("yellow2")
banner.setStyle("bold")
banner.draw(self.win)
self.msg = Text(Point(300,380), "Welcome to the Dice Table")
self.msg.setSize(18)
self.msg.draw(self.win)
self.createDice(Point(300,100), 75)
self.buttons = []
self.addDiceButtons(Point(300,170), 75, 30)
b = Button(self.win, Point(300, 230), 400, 40, "Roll Dice")
self.buttons.append(b)
b = Button(self.win, Point(300, 280), 150, 40, "Score")
self.buttons.append(b)
b = Button(self.win, Point(570,375), 40, 30, "Quit")
self.buttons.append(b)
self.money = Text(Point(300,325), "$100")
self.money.setSize(18)
self.money.draw(self.win)

You should compare this code to Figure 12.2 to make sure you understand how the elements of the interface
are created and positioned.

I hope you noticed that I pushed the creation of the dice and their associated buttons into a couple of
helper methods. Here are the necessary definitions:

def createDice(self, center, size):
center.move(-3*size,0)
self.dice = []
for i in range(5):

view = DieView(self.win, center, size)
self.dice.append(view)
center.move(1.5*size,0)

def addDiceButtons(self, center, width, height):
center.move(-3*width, 0)
for i in range(1,6):

label = "Die %d" % (i)
b = Button(self.win, center, width, height, label)
self.buttons.append(b)
center.move(1.5*width, 0)

These two methods are similar in that they employ a loop to draw five similar widgets. In both cases, a
Point variable, center, is used to calculate the correct position of the next widget.

Implementing the Interaction

You might be a little scared at this point that the constructor for our GUI interface was so complex. Even
simple graphical interfaces involve many independent components. Getting them all set up and initialized is
often the most tedious part of coding the interface. Now that we have that part out of the way, actually writing
the code that handles the interaction will not be too hard, provided we attack it one piece at a time.

Let’s start with the simple output methods setMoney and showResult. These two methods display
some text in our interface window. Since our constructor took care of creating and positioning the relevant
Text objects, all our methods have to do is call the setText methods for the appropriate objects.

def setMoney(self, amt):

220 CHAPTER 12. OBJECT-ORIENTED DESIGN

self.money.setText("$%d" % (amt))

def showResult(self, msg, score):
if score > 0:

text = "%s! You win $%d" % (msg, score)
else:

text = "You rolled %s" % (msg)
self.msg.setText(text)

In a similar spirit, the output method setDice must make a call to the setValue method of the
approriate DieView objects in dice. We can do this with a for loop.

def setDice(self, values):
for i in range(5):

self.dice[i].setValue(values[i])

Take a good look at the line in the loop body. It sets the ith die to show the ith value.
As you can see, once the interface has been constructed, making it functional is not overly difficult.

Our output methods are completed with just a few lines of code. The input methods are only slightly more
complicated.

The wantToPlay method will wait for the user to click either “Roll Dice” or “Quit.” We can use our
choose helper method to do this.

def wantToPlay(self):
ans = self.choose(["Roll Dice", "Quit"])
self.msg.setText("")
return ans == "Roll Dice"

After waiting for the user to click an appropriate button, this method then clears out any message, such as
the previous results, by setting the msg text to the empty string. The method then returns a Boolean value by
examining the label returned by choose.

That brings us to the chooseDice method. Here we must implement a more extensive user interaction.
The chooseDice method returns a list of the indexes of the dice that the user wishes to roll.

In our GUI, the user will choose dice by clicking on corresponding buttons. We need to maintain a list of
which dice have been chosen. Each time a die button is clicked, that die is either chosen (its index is appended
to the list) or unchosen (its index is removed from the list). In addition, the color of the corresponding
DieView reflects the status of the die. The interaction ends when the user clicks either the roll button or the
score button. If the roll button is clicked, the method returns the list of currently chosen indexes. If the score
button is clicked, the function returns an empty list to signal that the player is done rolling.

Here is one way to implement the choosing of dice. The comments in this code explain the algorithm:

def chooseDice(self):
choices is a list of the indexes of the selected dice
choices = [] # No dice chosen yet
while 1:

wait for user to click a valid button
b = self.choose(["Die 1", "Die 2", "Die 3", "Die 4", "Die 5",

"Roll Dice", "Score"])

if b[0] == "D": # User clicked a die button
i = eval(b[4]) - 1 # Translate label to die index
if i in choices: # Currently selected, unselect it

choices.remove(i)
self.dice[i].setColor("black")

else: # Currently unselected, select it
choices.append(i)

12.4. OO CONCEPTS 221

self.dice[i].setColor("gray")
else: # User clicked Roll or Score

for d in self.dice: # Revert appearance of all dice
d.setColor("black")

if b == "Score": # Score clicked, ignore choices
return []

elif choices != []: # Don’t accept Roll unless some
return choices # dice are actually selected

That about wraps up our program. The only missing piece of our interface class is the close method.
To close up the graphical version, we just need to close the graphics window.

def close(self):
self.win.close()

Finally, we need a few lines to actually get our graphical poker playing program started. This code is
exactly like the start code for the textual version, except that we use a GraphicsInterface in place of
the TextInterface.

inter = GraphicsInterface()
app = PokerApp(inter)
app.run()

We now have a complete, useable video dice poker game. Of course, our game is lacking a lot of bells and
whistles such as printing a nice introduction, providing help with the rules, and keeping track of high scores.
I have tried to keep this example relatively simple, while still illustrating important issues in the design of
GUIs using objects. Improvements are left as exercises for you. Have fun with them!

12.4 OO Concepts

My goal for the racquetball and video poker case studies was to give you a taste for what OOD is all about.
Actually, what you’ve seen is only a distillation of the design process for these two programs. Basically, I have
walked you through the algorithms and rationale for two completed designs. I did not document every single
decision, false start and detour along the way. Doing so would have at least tripled the size of this (already
long) chapter. You will learn best by making your own decisions and discovering your own mistakes, not by
reading about mine.

Still, these smallish examples illustrate much of the power and allure of the object-oriented approach.
Hopefully you can see why OO techniques are becoming standard practice in software development. The
bottom-line is that the OO approach helps us to produce complex software that is more reliable and cost-
effective. However, I still have not defined exactly what counts as objected-oriented development.

Most OO gurus talk about three features that together make development truly object-oriented: encapsu-
lation, polymorphism and inheritance. I don’t want to belabor these concepts too much, but your introduction
to object-oriented design and programming would not be complete without at least some understanding of
what is meant by these terms.

12.4.1 Encapsulation

I have already mentioned the term encapsulation in previous discussion of objects. As you know, objects
know stuff and do stuff. They combine data and operations. This process of packaging some data along with
the set of operations that can be performed on the data is called encapsulation.

Encapsulation is one of the major attractions of using objects. It provides a convenient way to compose
complex problems that corresponds to our intuitive view of how the world works. We naturally think of the
world around us as consisiting of interacting objects. Each object has its own identity, and knowing what
kind of object it is allows us to understand its nature and capabilities. I look out my window and I see houses,
cars and trees, not a swarming mass of countless molecules or atoms.

222 CHAPTER 12. OBJECT-ORIENTED DESIGN

From a design standpoint, encapsulation also provides a critical service of separating the concerns of
“what” vs. “how.” The actual implementation of an object is independent of its use. The implementation
can change, but as long as the interface is preserved, other components that rely on the object will not break.
Encapsulation allows us to isolate major design decisions, especially ones that are subject to change.

Another advantage of encapsulation is that it supports code reuse. It allows us to package up general
components that can be used from one program to the next. The DieView class and Button classes are
good examples of reuseable components.

Encapsulation is probably the chief benefit of using objects, but alone, it only makes a system object-
based. To be truly objected-oriented, the approach must also have the characteristics of polymorphism and
inheritance.

12.4.2 Polymorphism

Literally, the word polymorphism means “many forms.” When used in object-oriented literature, this refers
to the fact that what an object does in response to a message (a method call) depends on the type or class of
the object.

Our poker program illustrated one aspect of polymorphism. The PokerApp class was used both with
a TextInterface and a GraphicsInterface. There were two different forms of interface, and the
PokerApp class could function quite well with either. When the PokerApp called the showDicemethod,
for example, the TextInterface showed the dice one way and the GraphicsInterface did it an-
other.

In our poker example, we used either the text interface or the graphics interface. The remarkable thing
about polymorphism, however, is that a given line in a program may invoke a completely different method
from one moment to the next. As a simple example, suppose you had a list of graphics objects to draw on the
screen. The list might contain a mixture of Circle, Rectangle, Polygon, etc. You could draw all the
items in a list with this simple code:

for obj in objects:
obj.draw(win)

Now ask yourself, what operation does this loop actually execute? When obj is a circle, it executes the
draw method from the circle class. When obj is a rectangle, it is the draw method from the rectangle class,
etc.

Polymorphism gives object-oriented systems the flexibility for each object to perform an action just the
way that it should be performed for that object. Before object orientation, this kind of flexibility was much
harder to achieve.

12.4.3 Inheritance

The third important property for object-oriented approaches, inheritance, is one that we have not yet used.
The idea behind inheritance is that a new class can be defined to borrow behavior from another class. The
new class (the one doing the borrowing) is called a subclass, and the existing class (the one being borrowed
from) is its superclass.

For example, if we are building a system to keep track of employees, we might have a general class
Employee that contains the general information that is common to all employees. One example attribute
would be a homeAddress method that returns the home address of an employee. Within the class of all
employees, we might distinguish between SalariedEmployee and HourlyEmployee. We could make
these subclasses of Employee, so they would share methods like homeAddress. However, each subclass
would have its own monthlyPay function, since pay is computed differently for these different classes of
employees.

Inheritance provides two benefits. One is that we can structure the classes of a system to avoid duplication
of operations. We don’t have to write a separate homeAddress method for the HourlyEmployee and
SalariedEmployee classes. A closely related benefit is that new classes can often be based on existing
classes, promoting code reuse.

12.5. EXERCISES 223

We could have used inheritance to build our poker program. When we first wrote the DieView class,
it did not provide a way of changing the appearance of the die. We solved this problem by modifying the
original class definition. An alternative would have been to leave the original class unchanged and create
a new subclass ColorDieView. A ColorDieView is just like a DieView except that it contains an
additional method that allows us to change its color. Here is how it would look in Python:

class ColorDieView(DieView):

def setValue(self, value):
self.value = value
DieView.setValue(self, value)

def setColor(self, color):
self.foreground = color
self.setValue(self.value)

The first line of this definition says that we are defining a new class ColorDieView that is based
on (i.e., a subclass of) DieView. Inside the new class, we define two methods. The second method,
setColor, adds the new operation. Of course, in order to make setColor work, we also need to modify
the setValue operation slightly.

The setValuemethod in ColorDieView redefines or overrides the definition of setValue that was
provided in the DieView class. The setValuemethod in the new class first stores the value and then relies
on the setValue method of the superclass DieView to actually draw the pips. Notice especially how the
call to the method from the superclass is made. The normal approachself.setValue(value)would re-
fer to the setValuemethod of the ColorDieView class, since self is an instance of ColorDieView.
In order to call the original setValue method from the superclass, it is necessary to put the class name
where the object would normally go.

DieView.setValue(self,value)

The actual object to which the method is applied is then sent as the first parameter.

12.5 Exercises

1. In your own words, describe the process of OOD.

2. In your own words, define encapsulation, polymorphism and inheritance.

3. Add bells and whistles to the Poker Dice game.

4. Redo any of the design problems from Chapter 9 using OO techniques.

5. Find the rules to an interesting dice game and write an interactive program to play it. Some examples
are Craps, Yacht, Greed and Skunk.

6. Write a program that deals four bridge hands, counts how many points they have and gives opening
bids.

7. Find a simple card game that you like and implement an interactive program to play that game. Some
possibilities are War, Blackjack, various solitaire games, and Crazy Eights.

8. Write an interactive program for a board game. Some examples are Othello(Reversi), Connect Four,
Battleship, Sorry!, and Parcheesi.

224 CHAPTER 12. OBJECT-ORIENTED DESIGN

Chapter 13

Algorithm Analysis and Design

If you have worked your way through to this point in the book, you are well on the way to becoming a
programmer. Way back in Chapter 1, I discussed the relationship between programming and the study of
computer science. Now that you have some programming skills, you are ready to start considering the
broader issues in the field. Here we will take up one of the central issues, namely the design and analysis of
algorithms.

13.1 Searching

Let’s begin by considering a very common and well-studied programming problem: search. Search is the
process of looking for a particular value in a collection. For example, a program that maintains the member-
ship list for a club might need to look up the information about a particular member. This involves some form
of search process.

13.1.1 A Simple Searching Problem

To make the discussion of searching algorithms as simple as possible, let’s boil the problem down to its
essential essence. Here is the specification of a simple searching function:

def search(x, nums):
nums is a list of numbers and x is a number
RETURNS the position in the list where x occurs or -1 if
x is not in the list.

Here are a couple interactive examples that illustrate its behavior:

>>> search(4, [3, 1, 4, 2, 5])
2
>>> search(7, [3, 1, 4, 2, 5])
-1

In the first example, the function returns the index where 4 appears in the list. In the second example, the
return value -1 indicates that 7 is not in the list.

You may recall from our discussion of list operations that Python actually provides a number of built-in
search-related methods. For example, we can test to see if a value appears in a sequence using in.

if x in nums:
do something

If we want to know the position of x in a list, the index method fills the bill nicely.

225

226 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

>>> nums = [3,1,4,2,5]
>>> nums.index(4)
2

In fact, the only difference between our search function and index is that the latter raises an exception if
the target value does not appear in the list. We could implement the search function using index by simply
catching the exception and returning -1 for that case.

def search(x, nums):
try:

return nums.index(x)
except:

return -1

This approach begs the question, however. The real issue is how does Python actually search the list? What
is the algorithm?

13.1.2 Strategy 1: Linear Search

Let’s try our hand at developing a search algorithm using a simple “be the computer” strategy. Suppose that
I gave you a page full of numbers in no particular order and asked whether the number 13 is in the list. How
would you solve this problem? If you are like most people, you would simply scan down the list comparing
each value to 13. When you see 13 in the list, you quit and tell me that you found it. If you get to the very
end of the list without seeing 13, then you tell me it’s not there.

This strategy is called a linear search. You are searching through the list of items one by one until the
target value is found. This algorithm translates directly into simple code.

def search(x, nums):
for i in range(len(nums)):

if nums[i] == x: # item found, return the index value
return i

return -1 # loop finished, item was not in list

This algorithm was not hard to develop, and it will work very nicely for modest-sized lists. For an
unordered list, this algorithm is as good as any. The Python in and index operators both implement linear
searching algorithms.

If we have a very large collection of data, we might want to organize it in some way so that we don’t have
to look at every single item to determine where, or if, a particular value appears in the list. Suppose that the
list is stored in sorted order (lowest to highest). As soon as we encounter a value that is greater than the target
value, we can quit the linear search without looking at the rest of the list. On average, that saves us about half
of the work. But, if the list is sorted, we can do even better than this.

13.1.3 Strategy 2: Binary Search

When a list is ordered, there is a much better searching strategy, one that you probably already know. Have
you ever played the number guessing game? I pick a number between 1 and 100, and you try to guess what
it is. Each time you guess, I will tell you if your guess is correct, too high, or too low. What is your stategy?

If you play this game with a very young child, they might well adopt a strategy of simply guessing
numbers at random. An older child might employ a systematic approach corresponding to linear search,
guessing 1 � 2 � 3 � 4 � � � � until the mystery value is found.

Of course, virtually any adult will first guess 50. If told that the number is higher, then the range of
possible values is 50–100. The next logical guess is 75. Each time we guess the middle of the remaining
range to try to narrow down the possible range. This strategy is called a binary search. Binary means two,
and at each step, we are dividing the possible range into two parts.

We can employ a binary search strategy to look through a sorted list. The basic idea is that we use two
variables to keep track of the endpoints of the range in the list where the item could be. Initially, the target

13.1. SEARCHING 227

could be anywhere in the list, so we start with variables low and high set to the first and last positions of
the list, respectively.

The heart of the algorithm is a loop that looks at the item in the middle of the remaining range to compare
it to x. If x is smaller than the middle item, then we move top, so that the search is narrowed to the lower
half. If x is larger, then we move low, and the search is narrowed to the upper half. The loop terminates
when x is found or there are no longer any more places to look (i.e., low > high). Here is the code.

def search(x, nums):
low = 0
high = len(nums) - 1
while low <= high: # There is still a range to search

mid = (low + high) / 2 # position of middle item
item = nums[mid]
if x == item : # Found it! Return the index

return mid
elif x < item: # x is in lower half of range

high = mid - 1 # move top marker down
else: # x is in upper half

low = mid + 1 # move bottom marker up
return -1 # no range left to search, x is not there

This algorithm is quite a bit more sophisticated than the simple linear search. You might want to trace
through a couple of example searches to convince yourself that it actually works.

13.1.4 Comparing Algorithms

So far, we have developed two solutions to our simple searching problem. Which one is better? Well, that
depends on what exactly we mean by better. The linear search algorithm is much easier to understand and
implement. On the other hand, we expect that the binary seach is more efficient, because it doesn’t have to
look at every value in the list. Intuitively, then, we might expect the linear search to be a better choice for
small lists and binary search a better choice for larger lists. How could we actually confirm such intuitions?

One approach would be to do an empirical test. We could simply code up both algorithms and try them
out on various sized lists to see how long the search takes. These algorithms are both quite short, so it
would not be difficult to run a few experiments. When I tested the algorithms on my particular computer (a
somewhat dated laptop), linear search was faster for lists of length 10 or less, and there was no significant
difference in the range of length 10–1000. After that, binary search was a clear winner. For a list of a million
elements, linear search averaged 2.5 seconds to find a random value, whereas binary search averaged only
0.0003 seconds.

The empirical analysis has confirmed our intuition, but these are results from one particular machine
under specific circumstances (amount of memory, processor speed, current load, etc.). How can we be sure
that the results will always be the same?

Another approach is to analyze our algorithms abstractly to see how efficient they are. Other factors being
equal, we expect the algorithm with the fewest number of “steps” to be the more efficient. But how do we
count the number of steps? For example, the number of times that either algorithm goes through its main loop
will depend on the particular inputs. We have already guessed that the advantage of binary search increases
as the size of the list increases.

Computer scientists attack these problems by analyzing the number of steps that an algorithm will take
relative to the size or difficulty of the specific problem instance being solved. For searching, the difficulty is
determined by the size of the collection. Obviously, it takes more steps to find a number in a collection of a
million than it does in a collection of ten. The pertinent question is how many steps are needed to find a value
in a list of size n. We are particularly interested in what happens as n gets very large.

Let’s consider the linear search first. If we have a list of ten items, the most work our algorithm might
have to do is to look at each item in turn. The loop will iterate at most ten times. Suppose the list is twice as
big. Then we might have to look at twice as many items. If the list is three times as large, it will take three

228 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

times as long, etc. In general, the amount of time required is linearly related to the size of the list n. This is
what computer scientists call a linear time algorithm. Now you really know why it’s called a linear search.

What about the binary search? Let’s start by considering a concrete example. Suppose the list contains
sixteen items. Each time through the loop, the remaining range is cut in half. After one pass, there are eight
items left to consider. The next time through there will be four, then two, and finally one. How many times
will the loop execute? It depends on how many times we can halve the range before running out of data. This
table might help you to sort things out:

List size Halvings
1 0
2 1
4 2
8 3

16 4

Can you see the pattern here? Each extra iteration of the loop doubles the size of the list. If the binary
search loops i times, it can find a single value in a list of size 2i. Each time through the loop, it looks at
one value (the middle) in the list. To see how many items are examined in a list of size n, we need to solve
this relationship: n � 2i for i. In this formula, i is just an exponent with a base of 2. Using the appropriate
logarithm gives us this relationship: i � log2 n. If you are not entirely comfortable with logarithms, just
remember that this value is the number of times that a collection of size n can be cut in half.

OK, so what does this bit of math tell us? Binary search is an example of a log time algorithm. The
amount of time it takes to solve a given problem grows as the log of the problem size. In the case of binary
search, each additional iteration doubles the size of the problem that we can solve.

You might not appreciate just how efficient binary search really is. Let me try to put it in perspective.
Suppose you have a New York City phone book with, say, twelve million names listed in alphabetical order.
You walk up to a typical New Yorker on the street and make the following proposition (assuming their number
is listed): I’m going to try guessing your name. Each time I guess a name, you tell me if your name comes
alphabetically before or after the name I guess. How many guesses will you need?

Our analysis above shows the answer to this question is log212 � 000 � 000. If you don’t have a calculator
handy, here is a quick way to estimate the result. 210 � 1024 or roughly 1000, and 1000x1000 � 1 � 000 � 000.
That means that 210x210 � 220 � 1 � 000 � 000. That is, 220 is approximately one million. So, searching a
million items requires only 20 guesses. Continuting on, we need 21 guesses for two million, 22 for four
million, 23 for eight million, and 24 guesses to search among sixteen million names. We can figure out the
name of a total stranger in New York City using only 24 guesses! By comparison, a linear search would
require (on average) 6 million guesses. Binary search is a phenomenally good algorithm!

I said earlier that Python uses a linear search algorithm to implement its built-in searching methods. If a
binary search is so much better, why doesn’t Python use it? The reason is that the binary search is less general;
in order to work, the list must be in order. If you want to use binary search on an unordered list, the first thing
you have to do is put it in order or sort it. This is another well-studied problem in computer science, and
one that we should look at. Before we turn to sorting, however, we need to generalize the algorithm design
technique that we used to develop the binary search.

13.2 Recursive Problem-Solving

Remember the basic idea behind the binary search algorithm was to sucessively divide the problem in half.
This is sometimes referred to as a “divide and conquer” approach to algorithm design, and it often leads to
very efficient algorithms.

One interesting aspect of divide and conquer alorithms is that the original problem divides into subprob-
lems that are just smaller versions of the original. To see what I mean, think about the binary search again.
Initially, the range to search is the entire list. Our first step is to look at the middle item in the list. Should the
middle item turn out to be the target, then we are finished. If it is not the target, we continue by performing
binary search on either the top-half or the bottom half of the list.

Using this insight, we might express the binary search algorithm in another way.

13.2. RECURSIVE PROBLEM-SOLVING 229

Algorithm: binarySearch -- search for x in range nums[low] to nums[high]

mid = (low + high) / 2
if low > high

x is not in nums
elif x < nums[mid]

perform binary search for x in range nums[low] to nums[mid-1]
else

perform binary search for x in range nums[mid+1] to nums[high]

Rather than using a loop, this defintion of the binary search seems to refer to itself. What is going on here?
Can we actually make sense of such a thing?

13.2.1 Recursive Definitions

A description of something that refers to itself is called a recursive definition. In our last formulation, the
binary search algorithm makes use of its own description. A “call” to binary search “recurs” inside of the
definition—hence, the label recursive definition.

At first glance, you might think recursive definitions are just nonsense. Surely you have had a teacher
who insisted that you can’t use a word inside of its own definition? That’s called a circular definition and is
usually not worth much credit on an exam.

In mathematics, however, certain recursive definitions are used all the time. As long as we excercise some
care in the formulation and use of recursive definitions, they can be quite handy and surprisingly powerful.
Let’s look at a simple example to gain some insight and then apply those ideas to binary search.

The classic recursive example in mathematics is the definition of factorial. Back in Chapter 3, we defined
the factorial of a value like this:

n! � n
�
n � 1 � �

n � 2 � � � �

�
1 �

For example, we can compute
5! � 5

�
4 � �

3 � �
2 � �

1 �
Recall that we implemented a program to compute factorials using a simple loop that accumulates the factorial
product.

Looking at the calculation of 5!, you will notice something interesting. If we remove the 5 from the front,
what remains is a calculation of 4!. In general, n! � n

�
n � 1 � !. In fact, this relation gives us another way of

expressing what is meant by factorial in general. Here is a recursive definition:

n! �
�

1 if n � 0
n

�
n � 1 � ! otherwise

This definition says that the factorial of 0 is, by definition, 1, while the factorial of any other number is defined
to be that number times the factorial of one less than that number.

Even though this definition is recursive, it is not circular. In fact, it provides a very simple method of
calculating a factorial. Consider the value of 4!. By definition we have

4! � 4
�
4 � 1 � ! � 4

�
3! �

But what is 3!? To find out, we apply the definition again.

4! � 4
�
3! � � 4 � �

3 � �
3 � 1 � ! � � 4

�
3 � �

2! �
Now, of course, we have to expand 2!, which requires 1!, which requires 0!. Since 0! is simply 1, that’s the
end of it.

4! � 4
�
3! � � 4

�
3 � �

2! � � 4
�
3 � �

2 � �
1! � � 4

�
3 � �

2 � �
1 � �

0! � � 4
�
3 � �

2 � �
1 � �

1 � � 24

You can see that the recursive definition is not circular because each application causes us to request the
factorial of a smaller number. Eventually we get down to 0, which doesn’t require another application of the
definition. This is called a base case for the recursion. When the recursion bottoms out, we get a closed
expression that can be directly computed. All good recursive definitions have these key characteristics:

230 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

1. There are one or more base cases for which no recursion is required.

2. When the definition is recursively applied, it is always applied to a smaller case.

3. All chains of recursion eventually end up at one of the base cases.

13.2.2 Recursive Functions

You already know that the factorial can be computed using a loop with an accumulator. That implementation
has a natural correspondence to the original definition of factorial. Can we also implement a version of
factorial that follows the recursive definition?

If we write factorial as a separate function, the recursive definition translates directly into code.

def fact(n):
if n == 0:

return 1L
else:

return n * fact(n-1)

Do you see how the definition that refers to itself turns into a function that calls itself? The function first
checks to see if we are at a the base case n == 0 and, if so, returns 1 (note the use of a long int constant
since factorials grow rapidly). If we are not yet at the base case, the function returns the result of multiplying
n by the factorial of n-1. The latter is calculated by a recursive call to fact(n-1).

I think you will agree that this is a reasonable translation of the recursive definition. The really cool part
is that it actually works! We can use this recursive function to compute factorial values.

>>> from recfact import fact
>>> fact(4)
24
>>> fact(10)
3628800

Some beginning programmers are surprised by this result, but it follows naturally from the semantics for
functions that we discussed way back in Chapter 6. Remember that each call to a function starts that function
anew. That means it gets its own copy of any local values, including the values of the parameters. Figure 13.1
shows the sequence of recursive calls that computes 2!. Note especially how each return value is multiplied
by a value of n appropriate for each function invocation. The values of n are stored on the way down the
chain and then used on the way back up as the function calls return.

fact(2) n = 1

1
1n = 0

2

n = 2
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n−1)

n:

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n−1)

n:2 1

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n−1)

n: 0

Figure 13.1: Recursive computation of 2!

13.2.3 Recursive Search

Now that we have a technique for implementing recursive definitions, we are ready to go back and look again
at binary search as a recursive process. The basic idea was to look at the middle value and then recursively
search either the lower half or the upper half of the array. The base cases for the recursion are the conditions
when we can stop, namely when the target value is found, or we run out of places to look. The recursive calls

13.3. SORTING ALGORITHMS 231

will cut the size of the problem in half each time. In order to do this, we need to specify the range of locations
in the list that are still “in play” for each recursive call. We can do this by passing the values of low and
high along with the list. Each invocation will search the list between the low and high indexes.

Here is a direct implementation of the recursive algorithm using these ideas:

def recBinSearch(x, nums, low, high):
if low > high: # No place left to look, return -1

return -1
mid = (low + high) / 2
item = nums[mid]
if item == x: # Found it! Return the index

return mid
elif x < item: # Look in lower half

return recBinSearch(x, nums, low, mid-1)
else: # Look in upper half

return recBinSearch(x, nums, mid+1, high)

We can then implement our original search function using a suitable call to the recursive binary search, telling
it to start the search between 0 and len(nums)-1

def search(x, nums):
return recBinSearch(x, nums, 0, len(nums)-1)

Of course, as in the case of factorial, we already implemented this algorithm using a loop, and there
is no compelling reason to use a recursive implementation. In fact, the looping version is probably a bit
faster because calling functions is generally slower than iterating a loop. The recursive version, however,
makes the divide-and-conquer structure of binary search much more obvious. Below, we will see examples
where recursive divide-and-conquer approaches provide a natural solution to some problems where loops are
awkward.

13.3 Sorting Algorithms

The sorting problem provides a nice testbed for the algorithm design techniques we have been discussing.
Recall, the basic sorting problem is to take a list and rearrange it so that the values are in increasing (actually,
nondecreasing) order.

13.3.1 Naive Sorting: Selection Sort

Let’s start with a simple “be the computer” approach to sorting. Suppose you have a stack of index cards,
each with a number on it. The stack has been shuffled, and you need to put the cards back in order. How
would you accomplish this task?

There are any number of good systematic approaches. One simple method is to look through the deck
to find the smallest value and then place that value at the front of the stack (or perhaps in a separate stack).
Then you could go through and find the smallest of the remaining cards and put it next in line, etc. Of course,
this means that you’ll also need an algorithm for finding the smallest remaining value. You can use the same
approach we used for finding the max of a list (see Chapter 6). As you go through, you keep track of the
smallest value seen so far, updating that value whenever you find a smaller one.

The algorithm I just described is called selection sort. Basically, the algorithm consists of a loop and
each time through the loop, we select the smallest of the remaining elements and move it into its proper
position. Applying this idea to a list, we proceed by finding the smallest value in the list and putting it into
the 0th position. Then we find the smallest remaining value (from positions 1–(n-1)) and put it in position 1.
Next the smallest value from positions 2–(n-1) goes into position 2, etc. When we get to the end of the list,
everything will be in its proper place.

There is one subtlety in implementing this algorithm. When we place a value into its proper position, we
need to make sure that we do not accidently lose the value that was originally stored in that position. For
example, if the smallest item is in position 10, moving it into position 0 involves an assignment.

232 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

nums[0] = nums[10]

But this wipes out the value currently in nums[0]; it really needs to be moved to another location in the list.
A simple way to save the value is to swap it with the one that we are moving. Using simultaneous assignment,
the statement

nums[0], nums[10] = nums[10], nums[0]

places the value from position 10 at the front of the list, but preserves the original first value by stashing it
into location 10.

Using this idea, it is a simple matter to write a selection sort in Python. I will use a variable called
bottom to keep track of which position in the list we are currently filling, and the variable mp will be used
to track the location of the smallest remaining value. The comments in this code explain this implementation
of selection sort:

def selSort(nums):
sort nums into ascending order
n = len(nums)

For each position in the list (except the very last)
for bottom in range(n-1):

find the smallest item in nums[bottom]..nums[n-1]

mp = bottom # initially bottom is smallest so far
for i in range(bottom+1,n): # look at each position

if nums[i] < nums[mp]: # this one is smaller
mp = i # remember its index

swap smallest item to the bottom
lst[bottom], lst[mp] = lst[mp], lst[bottom]

One thing to notice about this algorithm is the accumulator for finding the minimum value. Rather than
actually storing the minimum seen so far, mp just remembers the position of the minimum. A new value is
tested by comparing the item in position i to the item in position mp. You should also notice that bottom
stops at the second to last item in the list. Once all of the items up to the last have been put in the proper
place, the last item has to be the largest, so there is no need to bother looking at it.

The selection sort algorithm is easy to write and works well for moderate-sized lists, but it is not a very
efficient sorting algorithm. We’ll come back and analyze it after we’ve developed another algorithm.

13.3.2 Divide and Conquer: Merge Sort

As discussed above, one technique that often works for developing efficient algorithms is the divide-and-
conquer approach. Suppose a friend and I were working together trying to put our deck of cards in order. We
could divide the problem up by splitting the deck of cards in half with one of us sorting each of the halves.
Then we just need to figure out a way of combining the two sorted stacks.

The process of combining two sorted lists into a single sorted result is called merging. If you think about
it, merging is pretty simple. Since our two stacks are sorted, each has its smallest value on top. Whichever of
the top values is the smallest will be the first item in the merged list. Once the smaller value is removed, we
can look at the tops of the stacks again, and whichever top card is smaller will be the next item in the list. We
just continue this process of placing the smaller of the two top values into the big list until one of the stacks
runs out. At that point, we finish out the list with the cards from the remaining stack.

Here is a Python implementation of the merge process. In this code, lst1 and lst2 are the smaller lists
and lst3 is the larger list where the results are placed. In order for the merging process to work, the length
of lst3 must be equal to the sum of the lengths of lst1 and lst2. You should be able to follow this code
by studying the accompanying comments:

13.3. SORTING ALGORITHMS 233

def merge(lst1, lst2, lst3):
merge sorted lists lst1 and lst2 into lst3

these indexes keep track of current position in each list
i1, i2, i3 = 0, 0, 0 # all start at the front

n1, n2 = len(lst1), len(lst2)

Loop while both lst1 and lst2 have more items
while i1 < n1 and i2 < n2:

if lst1[i1] < lst2[i2]: # top of lst1 is smaller
lst3[i3] = lst1[i1] # copy it into current spot in lst3
i1 = i1 + 1

else: # top of lst2 is smaller
lst3[i3] = lst2[i2] # copy it into current spot in lst3
i2 = i2 + 1

i3 = i3 + 1 # item added to lst3, update position

Here either lst1 or lst2 is done. One of the following loops will
execute to finish up the merge.

Copy remaining items (if any) from lst1
while i1 < n1:

lst3[i3] = lst1[i1]
i1 = i1 + 1
i3 = i3 + 1

Copy remaining items (if any) from lst2
while i2 < n2:

lst3[i3] = lst2[i2]
i2 = i2 + 1
i3 = i3 + 1

With this merging algorithm in hand, it’s easy to see the general structure for a divide-and-conquer sorting
algorithm.

Algorithm: mergeSort nums

split nums into two halves
sort the first half
sort the second half
merge the two sorted halves back into nums

Looking at the steps in this algorithm, the first and last parts look easy. We can use slicing to split the list,
and we can use the merge function that we just wrote to put the pieces back together. But how do we sort
the two halves?

Well, let’s think about it. We are trying to sort a list, and our algorithm requires us to sort two smaller
lists. This sounds like a perfect place to use recursion. Maybe we can use mergeSort itself to sort the two
lists. Let’s go back to our recursion guidelines and see if we can develop a proper recursive algorithm.

In order for recursion to work, we need to find at least one base case that does not require a recursive
call, and we also have to make sure that recursive calls are always made on smaller versions of the original
problem. The recursion in our mergeSort will always occur on a list that is half as large as the original,
so the latter property is automatically met. Eventually, our lists will be very small, containing only a single
item. Fortunately, a list with just one item is already sorted! Voilá, we have a base case. When the length of
the list is less than 2, we do nothing, leaving the list unchanged.

Given our analysis, we can update the mergeSort algorithm to make it properly recursive.

234 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

if len(nums) > 1:
split nums into two halves
mergeSort the first half
mergeSort the second half
merge the two sorted halves back into nums

We can translate this algorithm directly into Python code.

def mergeSort(nums):
Put items of nums in ascending order
n = len(nums)
Do nothing if nums contains 0 or 1 items
if n > 1:

split into two sublists
m = n / 2
nums1, nums2 = nums[:m], nums[m:]
recursively sort each piece
mergeSort(nums1)
mergeSort(nums2)
merge the sorted pieces back into original list
merge(nums1, nums2, nums)

I know this use of recursion may still seem a bit mysterious to you. You might try tracing this algorithm with
a small list (say eight elements), just to convince yourself that it really works. In general, though, tracing
through recursive algorithms can be tedious and often not very enlightening.

Recursion is closely related to mathematical induction, and it requires something of a leap of faith before
it becomes comfortable. As long as you follow the rules and make sure that every recursive chain of calls
eventually reaches a base case, your algorithms will work. You just have to trust and let go of the grungy
details. Let Python worry about that for you!

13.3.3 Comparing Sorts

Now that we have developed two sorting algorithms, which one should we use? Before we actually try them
out, let’s do some analysis. As in the searching problem, the difficulty of sorting a list depends on the size
of the list. We need to figure out how many steps each of our sorting algorithms requires as a function of the
size of the list to be sorted.

Take a look back at the algorithm for selection sort. Remember, this algorithm works by first finding the
smallest item, then finding the smallest of the remaining elements, and so on. Suppose we start with a list
of size n. In order to find the smallest value, the algorithm has to inspect each of the n items. The next time
around the outer loop, it has to find the smallest of the remaining n � 1 items. The third time around, there are
n � 2 items of interest. This process continues until there is only one item left to place. Thus, the total number
of iterations of the inner loop for the selection sort can be computed as the sum of a decreasing sequence.

n �
�
n � 1 � �

�
n � 2 � �

�
n � 3 � � � � � � 1

In other words, the time required by selection sort to sort a list of n items in proportional to the sum of the
first n whole numbers. There is a well-known formula for this sum, but even if you do not know the formula,
it is easy to derive. If you add the first and last numbers in the series you get n � 1. Adding the second and
second to last values gives

�
n � 1 � � 2 � n � 1. If you keep pairing up the values working from the outside

in, all of the pairs add to n � 1. Since there are n numbers, there must be n
2 pairs. That means the sum of all

the pairs is n � n �
1 �

2 .
You can see that the final formula contains an n2 term. That means that the number of steps in the

algorithm is proportional to the square of the size of the list. If the size of the list doubles, the number of
steps quadruples. If the size triples, it will take nine times as long to finish. Computer scientists call this a
quadratic or n-squared algorithm.

13.4. HARD PROBLEMS 235

Let’s see how that compares to the merge sort algorithm. In the case of merge sort, we divided a list into
two pieces and sorted the individual pieces before merging them together. The real work is done during the
merge process when the values in the sublists are copied back into the original list.

Figure 13.2 depicts the merging process to sort the list [3, 1, 4, 1, 5, 9, 2, 6]. The dashed
lines show how the original list is continually halved until each item is its own list with the values shown at
the bottom. The single-item lists are then merged back up into the two item lists to produce the values shown
in the second level. The merging process continues up the diagram to produce the final sorted version of the
list shown at the top.

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

Figure 13.2: Merges required to sort [3, 1, 4, 1, 5, 9, 2, 6].

The diagram makes analysis of the merge sort trivial. Starting at the bottom level, we have to copy the n
values into the second level. From the second to third level, the n values need to be copied again. Each level
of merging involves copying n values. The only question left to answer is how many levels are there? This
boils down to how many times a list of size n can be split in half. You already know from the analysis of
binary search that this is just log2 n. Therefore, the total work required to sort n items is n log2 n. Computer
scientists call this an n log n algorithm.

So which is going to be better, the n-squared selection sort or the n-log-n merge sort? If the input size is
small, the selection sort might be a little faster, because the code is simpler and there is less overhead. What
happens, though as n gets larger? We saw in the analysis of binary search that the log function grows very
slowly (log2 16 � 000 � 000 � 24) so n

�
log2 n � will grow much slower than n

�
n � .

Empirical testing of these two algorithms confirms this analysis. On my computer, selection sort beats
merge sort on lists up to size about 50, which takes around 0.008 seconds. On larger lists, the merge sort
dominates. Figure 13.3 shows a comparison of the time required to sort lists up to size 3000. You can see
that the curve for selection sort veers rapidly upward (forming half of a parabola), while the merge sort curve
looks almost straight (look at the bottom). For 3000 items, selection sort requires over 30 seconds while
merge sort completes the task in about 3

4 of a second. Merge sort can sort a list of 20,000 items in less than
six seconds; selection sort takes around 20 minutes. That’s quite a difference!

13.4 Hard Problems

Using our divide-and-conquer approach we were able to design good algorithms for the searching and sorting
problems. Divide and conquer and recursion are very powerful techniques for algorithm design. However,
not all problems have efficient solutions.

236 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000

S
ec

on
ds

List Size

’selSort’
’mergeSort’

Figure 13.3: Experimental comparison of selection sort and merge sort.

13.4.1 Towers of Hanoi

One very elegant application of recursive problem solving is the solution to a mathematical puzzle usually
called the Tower of Hanoi or Tower of Brahma. This puzzle is generally attributed to the French mathe-
matician Edouard Lucas, who published an article about it in 1883. The legend sorrounding the puzzle goes
something like this.

Somewhere in a remote region of the world is a monastery of a very devout religious order. The monks
have been charged with a sacred task that keeps time for the universe. At the beginning of all things, the
monks were given a table that supports three vertical posts. On one of the posts was a stack of 64 concentric
golden disks. The disks are of varying radii and stacked in the shape of a beautiful pyramid. The monks
were charged with the task of moving the disks from the first post to the third post. When the monks have
completed their task, all things will crumble to dust and the universe will end.

Of course, if that’s all there were to the problem, the universe would have ended long ago. To maintain
divine order, the monks must abide by certain rules.

1. Only one disk may be moved at a time.

2. A disk may not be “set aside.” It may only be stacked on one of the three posts.

3. A larger disk may never be placed on top of a smaller one.

Versions of this puzzle were quite popular at one time, and you can still find variations on this theme in
toy and puzzle stores. Figure 13.4 depicts a small version containing only eight disks. The task is to move
the tower from the first post to the third post using the center post as sort of a temporary resting place during
the process. Of course, you have to follow the three sacred rules given above.

We want to develop an algorithm for this puzzle. You can think of our algorithm either as a set of steps
that the monks need to carry out, or as a program that generates a set of instructions. For example, if we label
the three posts A, B and C. The instructions might start out like this:

Move disk from A to C.

13.4. HARD PROBLEMS 237

Figure 13.4: Tower of Hanoi puzzle with eight disks.

Move disk from A to B.
Move disk from C to B.
...

This is a difficult puzzle for most people to solve. Of course, that is not surprising, since most people are
not trained in algorithm design. The solution process is actually quite simple—if you know about recursion.

Let’s start by considering some really easy cases. Suppose we have a version of the puzzle with only
one disk. Moving a tower consisting of a single disk is simple— we just remove it from A and put it on C.
Problem solved. OK, what if there are two disks? I need to get the larger of the two disks over to post C, but
the smaller one is sitting on top of it. I need to move the smaller disk out of the way, and I can do this by
moving it to post B. Now the large disk on A is clear; I can move it to C and then move the smaller disk from
post B onto post C.

Now let’s think about a tower of size three. In order to move the largest disk to post C, I first have to move
the two smaller disks out of the way. The two smaller disks form a tower of size two. Using the process I
outlined above, I could move this tower of two onto post B, and that would free up the largest disk so that I
can move it to post C. Then I just have to move the tower of two disks from post B onto post C. Solving the
three disk case boils down to three steps.

1. Move a tower of two from A to B.

2. Move one disk from A to C.

3. Move a tower of two from B to C.

The first and third steps involve moving a tower of size two. Fortunately, we have already figured out how to
do this. It’s just like solving the puzzle with two disks, except that we move the tower from A to B using C
as the temporary resting place and then from B to C, using A as the temporary.

We have just developed the outline of a simple recursive algorithm for the general process of moving a
tower of any size from one post to another.

Algorithm: move n-disk tower from source to destination via resting place

move n-1 disk tower from source to resting place
move 1 disk tower from source to destination
move n-1 disk tower from resting place to destination

238 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

What is the base case for this recursive process? Notice how a move of n disks results in two recursive moves
of n � 1 disks. Since we are reducing n by one each time, the size of the tower will eventually be 1. A tower
of size 1 can be moved directly by just moving a single disk; we don’t need any recursive calls to remove
disks above it.

Fixing up our general algorithm to include the base case gives us a working moveTower algorithm.
Let’s code it up in Python. Our moveTower function will need parameters to represent the size of the tower,
n; the source post, source; the destintation post, dest; and the temporary resting post, temp. We an use
an int for n and the strings ”A”, ”B”, and ”C” to represent the posts. Here is the code for moveTower.

def moveTower(n, source, dest, temp):
if n == 1:

print "Move disk from", source, "to", dest+"."
else:

moveTower(n-1, source, temp, dest)
moveTower(1, source, dest, temp)
moveTower(n-1, temp, dest, source)

See how easy that was? Sometimes using recursion can make otherwise difficult problems almost trivial.
To get things started, we just need to supply values for our four parameters. Let’s write a little function

that prints out instructions for moving a tower of size n from post A to post C.

def hanoi(n):
moveTower(n, "A", "C", "B")

Now we’re ready to try it out. Here are solutions to the three- and four-disk puzzles. You might want to
trace through these solutions to convince yourself that they work.

>>> hanoi(3)
Move disk from A to C.
Move disk from A to B.
Move disk from C to B.
Move disk from A to C.
Move disk from B to A.
Move disk from B to C.
Move disk from A to C.

>>> hanoi(4)
Move disk from A to B.
Move disk from A to C.
Move disk from B to C.
Move disk from A to B.
Move disk from C to A.
Move disk from C to B.
Move disk from A to B.
Move disk from A to C.
Move disk from B to C.
Move disk from B to A.
Move disk from C to A.
Move disk from B to C.
Move disk from A to B.
Move disk from A to C.
Move disk from B to C.

So, our solution to the Tower of Hanoi is a “trivial” algorithm requiring only nine lines of code. What
is this problem doing in a section labeled hard problems? To answer that question, we have to look at the
efficiency of our solution. Remember, when I talk about the efficiency of an algorithm, I mean how many

13.4. HARD PROBLEMS 239

steps it requires to solve a given size problem. In this case, the difficulty is determined by the number of disks
in the tower. The question we want to answer is how many steps does it take to move a tower of size n?

Just looking at the structure of our algorithm, you can see that moving a tower of size n requires us to
move a tower of size n � 1 twice, once to move it off the largest disk, and again to put it back on top. If we
add another disk to the tower, we essentially double the number of steps required to solve it. The relationship
becomes clear if you simply try out the program on increasing puzzle sizes.

Numer of Disks Steps in Solution
1 1
2 3
3 7
4 15
5 31

In general, solving a puzzle of size n will require 2n � 1 steps.
Computer scientists call this an exponential time algorithm, since the measure of the size of the problem,

n, appears in the exponent of this formula. Exponential algorithms blow up very quickly and can only be
practically solved for relatively small sizes, even on the fastest computers. Just to illustrate the point, if our
monks really started with a tower of just 64 disks and moved one disk every second, 24 hours a day, every day,
without making a mistake, it would still take them over 580 billion years to complete their task. Considering
that the universe is roughly 15 billion years old now, I’m not too worried about turning to dust just yet.

Even though the algorithm for Towers of Hanoi is easy to express, it belongs to a class known as in-
tractable problems. These are problems that require too much computing power (either time or memory)
to be solved in practice, except for the simplest cases. And in this sense, our toy-store puzzle does indeed
represent a hard problem. But some problems are even harder than intractable, and we’ll meet one of those
in the next section.

13.4.2 The Halting Problem

Let’s just imagine for a moment that this book has inspired you to pursue a career as a computer professional.
It’s now six years later, and you are a well-established software developer. One day, your boss comes to you
with an important new project, and you are supposed to drop everything and get right on it.

It seems that your boss has had a sudden inspiration on how your company can double its productivity.
You’ve recently hired a number of rather inexperienced programmers, and debugging their code is taking an
inordinate amount of time. Apparently, these wet-behind-the-ears newbies tend to accidently write a lot of
programs with inifinite loops (you’ve been there, right?). They spend half the day waiting for their computers
to reboot so they can track down the bugs. Your boss wants you to design a program that can analyze source
code and detect whether it contains an infinite loop before actually running it on test data. This sounds like
an interesting problem, so you decide to give it a try.

As usual, you start by carefully considering the specifications. Basically, you want a program that can read
other programs and determine whether they contain an infinite loop. Of course, the behavior of a program is
determined not just by its code, but also by the input it is given when it runs. In order to determine if there is
an infinite loop, you will have to know what the input will be. You decide on the following specification:

Program: Halting Analyzer

Inputs: A Python program file.
The input for the program.

Outputs: “OK” if the program will evenutally stop.
“FAULTY” if the program has an infinite loop.

Right away you notice a couple interesting things about this program. One is that it is a program that
examines other programs. You have not written many of these before, but you know that it’s not a problem
in principle. After all, compilers and interpreters are common examples of programs that analyze other
programs. You can represent both the program that is being analyzed and the proposed input to the program
as Python strings.

240 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

The second thing you notice is that this description sounds similar to something you’ve heard about
before. Hmmm... a program that determines whether another program will halt or not. Suddenly it dawns on
you: this is known as the Halting Problem, and it’s unsolvable. There is no possible algorithm that can meet
this specification!

How do we know that there is no solution to this problem? This is a question that all the design skills in
the world will not answer for you. Design can show that problems are solvable, but it can never prove that a
problem is not solvable. To do that, we need to use our analytical skills.

One way to prove that something is impossible is to first assume that it is possible and show that this leads
to a contradiction. Mathematicians call this proof by contradiction. We’ll use this technique to show that the
halting problem cannot be solved.

We begin by assuming that there is some algorithm that can determine if a program terminates when
executed on a particular input. If such an algorithm could be written, we could package it up in a function.

def terminates(program, inputData):
program and inputData are both strings
RETURNS true if program would halt when run with inputData
as its input.

Of course, I can’t actually write the function, but let’s just assume that this function exists.
Using the terminates function, we can write a goofy program.

goofy.py
import string

def terminates(program, inputData):
program and inputData are both strings
RETURNS true if program would halt when run with inputData
as its input.

def main():
Read a program from standard input
lines = []
print "Type in a program (type ’done’ to quit)."
line = raw_input("")
while line != "done":

lines.append(line)
line = raw_input("")

testProg = string.join(lines, "\n")

If program halts on itself as input, go into an infinite loop
if terminates(testProg, testProg):

while 1: pass

main()

The first thing goofy.py does is read in a program typed by the user. This is accomplished with a sentinel
loop that accumulates lines in a list one at a time. The string.join function then concatenates the
lines together using a newline character ("

�
n") between them. This effectively creates a multi-line string

representing the program that was typed.
Goofy.py then calls the terminates function and sends the input program as both the program to

test and the input data for the program. Essentially, this is a test to see if the program read from the input
terminates when given itself as input. The pass statement actually does nothing; if the terminates
function returns true, goofy.py will go into an infinite loop.

OK, this seems like a silly program, but there is nothing in principle that keeps us from writing it, provided
that the terminates function exists. Goofy.py is constructed in this peculiar way simply to illustrate a
point. Here’s the million dollar question: What happens if we run goofy.py and, when prompted to type

13.4. HARD PROBLEMS 241

in a program, type in the contents of goofy.py? Put more specifically, does goofy.py halt when given
itself as its input?

Let’s think it through. We are running goofy.py and providing goofy.py as its input. In the call to
terminates, both the program and the data will be a copy of goofy.py, so if goofy.py halts when
given itself as input, terminateswill return true. But if terminates returns true, goofy.py then goes
into an infinite loop, so it doesn’t halt! That’s a contradiction; goofy.py can’t both halt and not halt. It’s
got to be one or the other.

Let’s try it the other way around. Suppose that terminates returns a false value. That means that
goofy.py, when given itself as input goes into an infinite loop. But as soon as terminates returns false,
goofy.py quits, so it does halt! It’s still a contradiction.

If you’ve gotten your head around the previous two paragraphs, you should be convinced that goofy.py
represents an impossible program. The existence of a function meeting the specification for terminates
leads to a logical impossibility. Therefore, we can safely conclude that no such function exists. That means
that there cannot be an algorithm for solving the halting problem!

There you have it. Your boss has assigned you an impossible task. Fortunately, your knowledge of
computer science is sufficient to recognize this. You can explain to your boss why the problem can’t be
solved and then move on to more productive pursuits.

13.4.3 Conclusion

I hope this chapter has given you a taste of what computer science is all about. As the examples in this chapter
have shown, computer science is much more than “just” programming. The most important computer for any
computing professional is still the one between the ears.

Hopefully this book has helped you along the road to becoming a computer programmer. Along the way,
I have tried to it has pique your curiousity about the science of computing. If you have mastered the concepts
in this text, you can already write interesting and useful programs. You should also have a firm foundation of
the fundamental ideas of computer science and software engineering. Should you be interested in studying
these fields in more depth, I can only say “go for it.” Perhaps one day you will also consider yourself a
computer scientist; I would be delighted if my book played even a very small part in that process.

Index

doc , 171
init , 168
name , 106

abstraction, 148
accessor, 68
accumulator, 31
acronym, 61
algorithm

analysis, 2, 233
definition of, 2
design strategy, 118
divide and conquer, 235
exponential time, 245
intractable, 246
linear time, 234
log time, 234
quadratic (n-squared) time, 241

algorithms
average n numbers

counted loop, 123
empty string sentinel, 128
interactive loop, 126

binary search, 233
cannonball simulation, 162
future value, 23
future value graph, 71, 73
input validation, 135
linear search, 232
max-of-three

comparing each to all, 115
decision tree, 116
sequential, 117

median, 189
merge sort, 240
message decoding, 48
message encoding, 47
quadratic equation three-way decision, 110
racquetball simulation

simOneGame, 150
selection sort, 238
simNGames, 149
temperature conversion, 14

alias, 69
analysis of algorithms, 2, 233

and, 132
operational definition, 138

Ants Go Marching, The, 100
append, 186
archery, 85, 121
argument, 93
array, 186

associative, 199
arrow (on Lines), 82
ASCII, 46
assignment statement, 10, 17–20

sematics, 17
simultaneous, 19
syntax, 17

associative array, 199
attributes, 161

private, 178
average n numbers

algorithm
empty string sentinel, 128

problem description, 123
program

counted loop, 123
empty string sentinel, 128
end-of-file loop, 130
from file with readlines, 129
interactive loop, 126
negative sentinel, 127

average two numbers, 20
average1.py, 123
average2.py, 126
average3.py, 127
average4.py, 128
average5.py, 129
average6.py, 130
avg2.py, 20

babysitting, 120
batch processing, 58

example program, 58
binary, 4
binary search, 232
bit, 33
black box, 207
Blackjack, 159

242

INDEX 243

BMI (Body Mass Index), 120
Boolean

algebra (logic), 134
expression, 106, 131
operator, 132
values, 106

break statement, 136
implementing post-test loop, 136
style considerations, 137

Brooks, Fred, 208
bug, 13
butterfly effect, 11
Button

class definition, 175
description, 173
methods, 174

button.py, 175
byte code, 8

Caesar cipher, 61
calculator

problem description, 194
program, 197

cannonball
algorithm, 162
graphical display, 180
problem description, 162
program, 164, 169, 172
Projectile class, 169

card, playing, 181
cball1.py, 164
cball3.py, 169
cball4.py, 172
Celsius, 13
change counter

program, 27, 54
change.py, 27
change2.py, 54
chaos

discussion, 10–11
program, 7

chaos.py, 7
chr, 46
Christmas, 85
cipher, 50
ciphertext, 50
Circle

constructor, 82
methods, 82

circle
area formula, 38
intersection with line, 85

class, 66, 161
class standing, 120

class statement, 167
classes

Button, 175
Calculator, 197
Dice, 217
DieView, 176, 193
GraphicsInterface, 225
MSDie, 166
Player, 213
PokerApp, 219
Projectile, 169
Projectile as module file, 171
RBallGame, 211
SimStats, 210
TextInterface, 221

client, 207
clone, 70, 82
close

GraphWin, 81
cmp, 203
code duplication

in future value graph, 91
maintenance issues, 88
reducing with functions, 88

coffee, 39
Collatz sequence, 140
color

changing graphics object, 75
changing GraphWin, 75
fill, 75
outline, 75
specifying, 84

color rgb, 84
comments, 9
compareItems, 203
compiler, 4

diagram, 5
vs. interpreter, 5

compound condition, 115
computer

definition of, 1
functional view, 3
program, 1

computer science
definition of, 2
methods of investigation, 2

concatenation
list, 185
string, 43

condition, 105
compound, 115
design issues, 115
for termination, 134
syntax, 105

244 INDEX

conditional loop, 124
constructor, 67, 161

init , 168
parameters in, 67

control codes, 46
control structure, 103

decision, 103
definition of, 22
loop, 22
nested loops, 130
nesting, 110

control structures
Boolean operators, 138
for statement, 22
if, 105
if-elif-else, 111
if-else, 108
while, 124

convert.py, 14, 103
convert2.py, 104
convert gui.pyw, 79
coordinates

as instance variables, 67
changing with setCoords, 75
in a GraphWin, 65
of a Point, 65
setCoords example, 76
transforming, 75

counted loop
definition of, 21
in Python, 22

CPU (Central Processing Unit), 3
craps, 159
createLabeledWindow, 98
cryptography, 50
cylinder, 180

data, 27, 161
data type

automatic conversion, 36
definition of, 28
explicit conversion, 36
in format specifiers, 53
mixed-type expressions, 36
string conversion, 52
string conversions, 49

data types
file, 55
float, 28
int, 28
long int, 35
string, 41

date, 120
day number, 120

debugging, 13
decision, 103

implementation via Boolean operator, 138
multi-way, 110
nested, 110
simple (one-way), 105
two-way, 108

decision tree, 115
decoding, 48

algorithm, 48
program, 49

definite loop, 124
definition of, 20
use as counted loop, 22

degree-days, 140
delete, 187
DeMorgan’s laws, 134
design, 13, 207

object oriented, see object oriented design
top-down, 146

steps in, 154
design pattern

importance of, 124
design patterns

counted loop, 21, 123
end-of-file loop, 129
interactive loop, 126
IPO, 14
loop accumulator, 31, 123
model-view, 217
nested loops, 130, 131
sentinel loop, 127

loop and a half, 136
design techniques

divide and conquer, 235
spiral development, 156

when to use, 158
dice, 159
dice poker

classes
Dice, 217
GraphicsInterface, 225
PokerApp, 219
TextInterface, 221

problem description, 216
dice roller

problem description, 173
program, 178

dictionary, 199
creation, 200
empty, 200
methods, 200

DieView, 191
class definition, 176, 193

INDEX 245

description, 176
Dijkstra, Edsgar, 2
disk, 3
distance function, 96
division, 29
docstring, 171
dot notation, 8, 59, 67
draw, 82
drawBar, 91
duplication, see code duplication

Easter, 120
elif, 111
empty list, 186
empty string, 128
encapsulation, 170, 228
encoding, 46

algorithm, 47
program, 47

encryption, 50
Entry, 79, 83
environment, programming, 7
epact, 39
equality, 105
Eratosthenes, 206
error checking, 112
errors

KeyError, 201
math range, 30
name, 16, 42
overflow, 33

Euclid’s algorithm, 140
eval, 49
event, 77
event loop, 179
event-driven, 77
exam grader, 61, 120
exception handling, 112
exponential notation, 35
expression

as input, 18
Boolean, 106, 131
definition of, 15
spaces in, 16

face, 85, 180
fact.py, 236
factorial

definition of, 31
program, 32, 35
recursive definition, 235

factorial.py, 32
factorial2, 35
Fahrenheit, 13

fetch execute cycle, 3
Fibonacci numbers, 39, 140
file, 55

closing, 56
opening, 56
processing, 56
program to print, 57
read operations, 56
representation, 55
write operations, 57

float, 28
literal, 28
representation, 35

floppy, 3
flowchart, 22
flowcharts

for loop, 22
if semantics, 105
loop and a half sentinel, 137
max-of-three decision tree, 116
max-of-three sequential solution, 117
nested decisions, 111
post-test loop, 135
temperature conversion with warnings, 104
two-way decision, 109
while loop, 125

flush, 81
for statement (for loop), 21, 123

as counted loop, 22
flowchart, 22
semantics, 21
syntax, 21
using simultaneous assignment, 196

formal parameter, 93
format specifier, 53
from..import, 64
function, 6

actual parameters, 93
arguments, 93
as parameter, 203
as black box, 207
as subprogram, 88
call, 6, 93
createLabeledWindow, 98
defining, 6, 93
for modularity, 97
invoking, see function, call
missing return, 97
multiple parameters, 94
None as default return, 97
parameters, 6
recursive, 236
return value, 95
returning multiple values, 96

246 INDEX

signature (interface), 148
to reduce duplication, 88

function definition, 88
functions

built-in
chr, 46
cmp, 203
eval, 49
float, 37
int, 37
len, 43
long, 37
max, 118
open, 56
ord, 46
range, 32
raw input, 42
read, 56
readline, 56
readlines, 56
round, 37
str, 52
type, 28
write, 57

compareItems, 203
distance, 96
drawBar, 91
gameOver, 152
getInputs, 148
getNumbers, 187
happy, 89
main, 7

why use, 9
math library, see math library, functions
mean, 188
median, 189
merge, 239
mergeSort, 240
moveTower, 244
random library, see random library, functions
recursive binary search, 237
recursive factorial, 236
selsort, 238
simNGames, 150
simOneGame, 152
singFred, 89
singLucy, 89
square, 95
stdDev, 188
string library, see string library

future value
algorithm, 23
problem description, 23
program, 24, 99

program specification, 23
future value graph

final algorithm, 73
problem, 70
program, 74, 76, 87, 91
rough algorithm, 71

futval.py, 24
futval graph.py, 74
futval graph2.py, 76, 87
futval graph3.py, 91
futval graph4.py, 99

gameOver, 152
GCD (Greatest Common Divisor), 140
getAnchor, 83
getCenter, 82, 83
getInputs, 148
getMouse, 78, 81

example use, 78
getNumbers, 187
getP1, 82, 83
getP2, 82, 83
getPoints, 83
getRadius, 82
getText, 83
getX, 82
getY, 82
goofy.py, 247
gozinta, 29
graphics library, 64, 81–84

drawing example, 66
generic methods summary, 82
graphical objects, 82–83
methods

for Text, 83
clone, 70
for Circle, 82
for Entry, 83
for Image, 83
for Line, 82
for Oval, 83
for Point, 82
for Polygon, 83
for Rectangle, 82
getMouse, 78
move, 68
setCoords, 75

objects
Circle, 82
Entry, 79, 83
GraphWin, 64, 81
Image, 83
Line, 82
Oval, 83

INDEX 247

Point, 65, 82
Polygon, 79, 83
Rectangle, 82
Text, 83

GraphWin, 64, 81
methods summary, 81

Gregorian epact, 39
GUI, 64

hailstone function, 140
halting problem, 246
happy, 89
happy birthday

lyrics, 88
problem description, 88
program, 90

happy.py, 90
hard drive, 3
hardware, 2
hash array, 199
hierarchy chart, 148, see structure chart
house, 86
house (of representatives), 120

identifier
definition of, 15
rules for forming, 15

Idle, 7
if statement

flowchart, 105
semantics, 105
syntax, 105

if-elif-else statement
semantics, 111
syntax, 111

if-else statement
decision tree, 116
nested, 110, 116
semantics, 109
syntax, 108

Image, 83
implementation, 13
import statement, 30, 106

with “from”, 64
indefinite loop, 124
indexing

dictionary, 200
from the right, 52
list, 185, 187
negative indexes, 52
string, 42

infinite loop, 125, 136
inheritance, 229
input, 9

validation, 135
input statement, 18

multiple values, 20
semantics, 18
syntax, 18

Input/Output Devices, 3
instance, 66, 161
instance variable, 67, 161

accessing, 168
and object state, 168

int, 28
automatic conversion to float, 36
conversion to float, 37
literal, 28
range of, 34
representaiton, 34

integer division, 29
interface, 148
interpreter, 4

diagram, 5
Python, 5
vs. compiler, 5

intractable problems, 2, 246
investment doubling, 140
IPO (Input, Process, Output), 14
iteration, 20

key
cipher, 51
private, 51
public, 51
with dictionary, 199

key-value pair, 199
KeyError, 201

label, 72
ladder, 39
leap year, 120
left-justification, 54
len

with list, 185, 188
with string, 43

lexicographic ordering, 105
library

definition of, 29
graphics, see graphics library
math, see math library
random, see random library
string, see string library

lightning, 39
Line, 82
line continuation

using backslash (
�
), 55

using brackets, 191

248 INDEX

linear time, 234
list, 184

as sequence, 185
creation, 186
empty, 186
indexing, 185
merging, 239
methods, 187, 203
operators, 185
removing items, 187
slice, 187
vs. string, 185

literal, 16
float, 28
int, 28
string, 41, 172

log time, 234
long int, 35

when to use, 36
loop, 9

accumulator variable, 31
as control structure, 22
counted, 21, 22
definite, 20, 124
end-of-file, 129
event loop, 179
for statement, 21
indefinite (conditional), 124
index variable, 21
infinite, 125, 136
interactive, 126
loop and a half, 136
nested, 130
over a sequence, 21
post-test, 135

using break, 136
using while, 135

pre-test, 124
vs. recursive function, 237
while statement, 124

loop and a half, 136
lower, 59
Lucas, Edouard, 243

machine code, 4
maintenance, 13
mapping, 199
math library, 29

functions, 30, 31
using, 30

math range error, 30
max, 118
max-of-n program, 117
max-of-three, 114–117

maxn.py, 117
mean, 188
median, 184, 189
memory, 3

main, 3
secondary, 3

merge, 239
merge sort, 239, see sorting, merge sort
mergeSort, 240

analysis, 241
message decoding

algorithm, 48
problem description, 48
program, 49

message encoding
algorithm, 47
problem description, 46
program, 47

meta-language, 17
method, 67, 161

parameterless, 68
accessor, 68
call (invoke), 67, 167
mutator, 68
normal parameter, 167
object parameters, 68
self parameter, 167

methods
activate, 174
clicked, 174
deactivate, 174
dictionary, 200
list, 186, 187

model-view, 217
module file, 7
module hierarchy chart, see structure chart
molecular weight, 39
Monte Carlo, 144, 159
month abbreviation

problem description, 44
program, 45

month.py, 45
move, 68, 82
moveTower, 244
MPG, 140
MSDie, 166
mutable, 185, 200
mutator, 68

name error, 16, 42
names, 15
nesting, 110
newline character (

�
n), 55, 108

with readline, 130

INDEX 249

Newton’s method, 40
None, 97
numbers2text.py, 49
numerology, 61

object, 161
aliasing, 69
application as, 194
as black box, 207
as parameter, 68
attributes, 161
definition of, 63
state, 68

object oriented design (OOD), 207
object-oriented, 63
objects

built-in
file, 59
None, 97
string, 59

graphics, see graphics library, objects
other, see classes

objrball.py, 213
Old MacDonald, 100
one-way decision, 105
open, 56
operator

Boolean, 132
as control structure, 138

definition of, 16
precedence, 16, 132
relational, 105
short-circuit, 138

operators
Boolean, 132
del, 187
list, 185
mathematical, 16
Python numeric operators, 28
relational, 105
string formatting, 53

or, 132
operational definition, 138

ord, 46
output labeling, 17
output statements, 16
Oval, 83
overflow error, 33
override, 230
overtime, 120

parameter, 6
actual, 93
as function input, 95

formal, 93
functions as parameters, 203
matching by order, 95
multiple, 94
objects as, 68
removing code duplication, 90
scope issues, 92, 93
self, 167

pi
math library, 31
Monte Carlo approximation, 159
series approximation, 39

pixel, 65
pizza, 38
plaintext, 50
Player, 213
playing card, 181
plot, 81
plotPixel, 81
Point, 65, 82
poker, see dice poker
Polygon, 79, 83
polymorphism, 228
portability, 5
post-test loop, 135
precision, 53
prime number, 140, 206
priming read, 127
print statement, 6, 17

semantics, 17
syntax, 17

printfile.py, 57
prism, 180
private attributes, 178
private key encryption, 51
program, 1
programming

definition of, 2
environment, 7
event-driven, 77
why learn, 2

programming language, 4–5
and portability, 5
vs. natural language, 4
examples, 4
high-level, 4
syntax, 17
translation, 4

programs, 35
average n numbers, 123, 126–130
average two numbers, 20
calculator, 197
cannonball simulation, 164, 169, 172
change counter, 27, 54

250 INDEX

chaos, 7
dice roller, 178
factorial, 32
future value, 24
future value graph, 74, 76, 87, 91, 99
goofy: an impossible program, 247
happy birthday, 90
max-of-n, 117
message decoding, 49
message encoding, 47
month abbreviation, 45
print file, 57
quadratic equation, 29, 107–109, 111–113
racquetball simulation, 153
racquetball simulation (object version, 213
simple statistics, 189
temperature conversion, 14, 79, 103, 104
triangle, 78, 96
username generation, 44, 58
word frequency, 204

prompt
Python, 6
using Text object, 79

prototype, 156
pseudocode, 14
pseudorandom numbers, 144
public key encryption, 51
pyc file, 8
Python

Boolean operators, 132
mathematical operators, 16
numeric operators, 28
programming environment, 7
relational operators, 105
reserved words, 15
running programs, 7

pyw, 78

quadratic equation, 29
algorithm with three-way decision, 110
decision flowchart, 109
program, 29, 107
program (bullet-proof), 113
program (simple if), 108
program (two-way decision), 109
program (using exception), 112
program (using if-elif-else), 111

quadratic time, 241
quadratic.py, 29, 107
quadratic2.py, 108
quadratic3.py, 109
quadratic4.py, 111
quadratic5.py, 112
quadratic6.py, 113

quiz grader, 60, 120

racquetball, 133, 143
racquetball simulation

algorithms
simNGames, 149
simOneGmae, 150

classes
Player, 213
RBallGame, 211
SimStats, 210

discussion, 156
problem description, 144
program, 153
program (object version), 213
specification, 144
structure charts

level 2, 150
level 3, 151
top-level, 148

RAM (random access memory), 3
random, 145
random library, 145

functions
random, 145
randrange, 145

random numbers, 144
random walk, 159
randrange, 145
range, 21

general form, 32
range error, 30
raw input, 42
RBallGame, 211
read, 56
readline, 56
readlines, 56
recBinSearch, 237
Rectangle, 82
recursion, 235
regression line, 141, 181
relational operator, 105
repetition

list, 185
string, 43

requirements, 13
reserved words

definition of, 15
in Python, 15

resolution, 72
return statement, 95

multiple values, 96
roller.py, 178
root beer, 30

INDEX 251

round, 37

scientific notation, 35
scope, 92
screen resolution, 72
script, 7
search, 231
searching

binary search, 232
linear search, 232
problem description, 231
recursive formulation, 237

seed, 145
selection sort, see sorting, selection sort
self, 167
selSort, 238
semantics, 4
senate, 120
sentinel, 127
sentinel loop, 127
sequence operators, 185
setArrow, 82
setBackground, 81
setCoords, 75, 81

example, 76
setFace, 83
setFill, 82
setOutline, 82
sets, 206
setSize, 83
setStyle, 83
setText, 83
setWidth, 82
shell game, 179
shuffle, 206
Sieve of Eratosthenes, 206
signature, 148
simNGames, 150
simOneGame, 152
simple decision, 105
simple statistics, 205

problem, 184
program, 189

SimStats, 210
simulation, 143
simultaneous assignment, 19

in for loop, 196
with multiple return values, 97

singFred, 89
singLucy, 89
slicing

list, 187
string, 43

slope of line, 39

snowman, 85
software, 2
software development, 13

phases
design, 13
implementation, 13
maintenance, 13
requirements, 13
specifications, 13
testing/debugging, 13

sort, 203
sorting, 234

merge sort
algorithm, 240
analysis, 241
implementation, 240

selection sort
algorithm, 238
analysis, 241
implementation, 238

space
between program lines, 24
blank line in output, 94, 108
in expressions, 16
in prompts, 18

specifications, 13
speeding fine, 120
sphere, 38, 180

surface area formula, 38
volume formula, 38

split, 48
sqrt, 30
square function, 95
square root, 40
standard deviation, 184
statement, 6
statements

assignment, 10, 17–20
break, 136
class, 167
comment, 9
def (function definition), 6, 88
for, 21, 123
from..import, 64
if, 105
if-elif-else, 111
if-else, 108
import, 30
input, 9, 18
multiple input, 20
print, 6, 16–17
return, 95
simultaneous assignment, 19
try-except, 113

252 INDEX

while, 124
stats.py, 189
stdDev, 188
step-wise refinement, 154
str, 52
string, 17, 41

as input, 41
as lookup table, 44
ASCII encoding, 46
concatenation, 43
converting to, 52
converting to other types, 49
formatting, see string formatting
formatting operator (%), 53
indexing, 42

from back, 52
length, 43
library, see string library
literal, 41, 172
multi-line, 172
operators, 44
repetition, 43
representation, 46
slicing, 43
substring, 43
UniCode encoding, 46
vs. list, 185

string formatting, 52
examples, 53
format specifier, 53
leading zeroes, 55
left-justification, 54
using a tuple, 204

string library, 48
function summary, 51
lower, 59
split, 48

structure chart, 148
structure charts

racquetball simulation level 2, 150
racquetball simulation level 3, 151
racquetball simulation top level, 148

subprogram, 88
substitution cipher, 50
substring, 43
swap, 19

using simultaneous assignment, 20
syntax, 4, 17
Syracuse numbers, 140

table tennis, 158
table-driven, 192
temperature conversion

algorithm, 14

problem description, 13
program, 14, 103
program with GUI, 79

temperature conversion with warnings
design, 103
flowchart, 104
problem description, 103
program, 104

tennis, 158
testing, 13

unit, 155
Text, 83

as prompt, 79
methods, 83

text file, 55
text2numbers.py, 47
textpoker.py, 221
Tkinter, 64
top-down design, 146

steps in process, 154
Towers of Hanoi (Brahma), 243

recursive solution, 244
Tracker, 180
triangle

area formula, 39
program, 78, 96

triangle.pyw, 78
triangle2.py, 96
truth table, 132
truth tables

definition of and, 132
definition of not, 132
definition of or, 132

try-except statement
semantics, 113
syntax, 113

tuple, 195
as string formtting argument, 204
unpacking, 196

type conversion
to float, 37
automatic, 36
explicit, 36
from string, 49
summary of functions, 52
to int, 37
to long int, 37
to string, 52

type function, 28

undraw, 82
UniCode, 46
unit testing, 155
unpacking, 196

INDEX 253

userfile.py, 58
username generation

program, 44, 58
username.py, 44

validation
of inputs, 135

value returning function, 95
variable

changing value, 18
definition of, 9
instance, 67, 161
local, 92
scope, 92

VGA, 72
volleyball, 133, 158

wc, 62
while statement

as post-test loop, 135
flow chart, 125
semantics, 124
syntax, 124

whitespace, see space
widget, 77, 172
width, 53
windchill, 140
winter, 85
word count, 62
word frequency

problem description, 201
program, 204

wordfreq.py, 204
write, 57

